Unverified Commit c18d50cb authored by robertpoll's avatar robertpoll Committed by GitHub

Use esp_partition_* functions in Updater.cpp (#3898)

Background

The current implementation of Update() uses the spi_flash_* api to write and read from flash. These functions ignore the partition->encrypted flag and always write raw data to flash even if the partition is marked as encrypted.

Changes in this PR

Update() now uses the esp_partition_* api.
Wrapper functions for esp_partition_* added to ESP.cpp. This was done to maintain a consistent approach to the way the spi_flash_* functions were used. I note though that not all of the esp-idf functions are used are wrapped, for example esp_ota_get_next_update_partition() so it may be that these should not be added?
The current implementation of Update() changes the first (magic) byte of firmware to 0xFF on write, and then when the firmware is completely written changes it back to ESP_IMAGE_HEADER_MAGIC. This works without erasing the sector because flash bits can be changed from 1->0 (but not 0->1). If the flash is encrypted then the actual data written to flash will not be all ones, so this approach will not work. In addition, encrypted flash must be written in 16 byte blocks. So, instead of changing the first byte the changed code stashes the first 16 bytes, and starts writing at the 17th byte, leaving the first 16 bytes as 0xFF. Then, in _enablePartition() the stashed bytes can be successfully written.
Benefits

Whilst it's not possible to use encrypted flash directly from either the Arduino IDE or PIO it's reasonably straightforward to compile and flash a bootloader with the necessary support from a simple esp-idf project and then use ArduinoOTA for subsequent updates. This PR enables the use of this workflow until such time as encrypted flash is supported, and is a first (small) step toward adding support.
Regardless of the above, the esp_partition_* api is recommended over the api_flash_* api.
Application code should mostly use these esp_partition_* API functions instead of lower level spi_flash_* API functions. Partition table API functions do bounds checking and calculate correct offsets in flash, based on data stored in a partition table.
parent 80418fad
...@@ -336,6 +336,20 @@ bool EspClass::flashRead(uint32_t offset, uint32_t *data, size_t size) ...@@ -336,6 +336,20 @@ bool EspClass::flashRead(uint32_t offset, uint32_t *data, size_t size)
return spi_flash_read(offset, (uint32_t*) data, size) == ESP_OK; return spi_flash_read(offset, (uint32_t*) data, size) == ESP_OK;
} }
bool EspClass::partitionEraseRange(const esp_partition_t *partition, uint32_t offset, size_t size)
{
return esp_partition_erase_range(partition, offset, size) == ESP_OK;
}
bool EspClass::partitionWrite(const esp_partition_t *partition, uint32_t offset, uint32_t *data, size_t size)
{
return esp_partition_write(partition, offset, data, size) == ESP_OK;
}
bool EspClass::partitionRead(const esp_partition_t *partition, uint32_t offset, uint32_t *data, size_t size)
{
return esp_partition_read(partition, offset, data, size) == ESP_OK;
}
uint64_t EspClass::getEfuseMac(void) uint64_t EspClass::getEfuseMac(void)
{ {
......
...@@ -21,6 +21,7 @@ ...@@ -21,6 +21,7 @@
#define ESP_H #define ESP_H
#include <Arduino.h> #include <Arduino.h>
#include <esp_partition.h>
/** /**
* AVR macros for WDT managment * AVR macros for WDT managment
...@@ -99,6 +100,10 @@ public: ...@@ -99,6 +100,10 @@ public:
bool flashWrite(uint32_t offset, uint32_t *data, size_t size); bool flashWrite(uint32_t offset, uint32_t *data, size_t size);
bool flashRead(uint32_t offset, uint32_t *data, size_t size); bool flashRead(uint32_t offset, uint32_t *data, size_t size);
bool partitionEraseRange(const esp_partition_t *partition, uint32_t offset, size_t size);
bool partitionWrite(const esp_partition_t *partition, uint32_t offset, uint32_t *data, size_t size);
bool partitionRead(const esp_partition_t *partition, uint32_t offset, uint32_t *data, size_t size);
uint64_t getEfuseMac(); uint64_t getEfuseMac();
}; };
......
...@@ -26,6 +26,8 @@ ...@@ -26,6 +26,8 @@
#define U_SPIFFS 100 #define U_SPIFFS 100
#define U_AUTH 200 #define U_AUTH 200
#define ENCRYPTED_BLOCK_SIZE 16
class UpdateClass { class UpdateClass {
public: public:
typedef std::function<void(size_t, size_t)> THandlerFunction_Progress; typedef std::function<void(size_t, size_t)> THandlerFunction_Progress;
...@@ -163,10 +165,12 @@ class UpdateClass { ...@@ -163,10 +165,12 @@ class UpdateClass {
bool _writeBuffer(); bool _writeBuffer();
bool _verifyHeader(uint8_t data); bool _verifyHeader(uint8_t data);
bool _verifyEnd(); bool _verifyEnd();
bool _enablePartition(const esp_partition_t* partition);
uint8_t _error; uint8_t _error;
uint8_t *_buffer; uint8_t *_buffer;
uint8_t *_skipBuffer;
size_t _bufferLen; size_t _bufferLen;
size_t _size; size_t _size;
THandlerFunction_Progress _progress_callback; THandlerFunction_Progress _progress_callback;
......
...@@ -36,11 +36,11 @@ static const char * _err2str(uint8_t _error){ ...@@ -36,11 +36,11 @@ static const char * _err2str(uint8_t _error){
} }
static bool _partitionIsBootable(const esp_partition_t* partition){ static bool _partitionIsBootable(const esp_partition_t* partition){
uint8_t buf[4]; uint8_t buf[ENCRYPTED_BLOCK_SIZE];
if(!partition){ if(!partition){
return false; return false;
} }
if(!ESP.flashRead(partition->address, (uint32_t*)buf, 4)) { if(!ESP.partitionRead(partition, 0, (uint32_t*)buf, ENCRYPTED_BLOCK_SIZE)) {
return false; return false;
} }
...@@ -50,17 +50,11 @@ static bool _partitionIsBootable(const esp_partition_t* partition){ ...@@ -50,17 +50,11 @@ static bool _partitionIsBootable(const esp_partition_t* partition){
return true; return true;
} }
static bool _enablePartition(const esp_partition_t* partition){ bool UpdateClass::_enablePartition(const esp_partition_t* partition){
uint8_t buf[4];
if(!partition){ if(!partition){
return false; return false;
} }
if(!ESP.flashRead(partition->address, (uint32_t*)buf, 4)) { return ESP.partitionWrite(partition, 0, (uint32_t*) _skipBuffer, ENCRYPTED_BLOCK_SIZE);
return false;
}
buf[0] = ESP_IMAGE_HEADER_MAGIC;
return ESP.flashWrite(partition->address, (uint32_t*)buf, 4);
} }
UpdateClass::UpdateClass() UpdateClass::UpdateClass()
...@@ -179,24 +173,33 @@ void UpdateClass::abort(){ ...@@ -179,24 +173,33 @@ void UpdateClass::abort(){
bool UpdateClass::_writeBuffer(){ bool UpdateClass::_writeBuffer(){
//first bytes of new firmware //first bytes of new firmware
uint8_t skip = 0;
if(!_progress && _command == U_FLASH){ if(!_progress && _command == U_FLASH){
//check magic //check magic
if(_buffer[0] != ESP_IMAGE_HEADER_MAGIC){ if(_buffer[0] != ESP_IMAGE_HEADER_MAGIC){
_abort(UPDATE_ERROR_MAGIC_BYTE); _abort(UPDATE_ERROR_MAGIC_BYTE);
return false; return false;
} }
//remove magic byte from the firmware now and write it upon success
//this ensures that partially written firmware will not be bootable //Stash the first 16 bytes of data and set the offset so they are
_buffer[0] = 0xFF; //not written at this point so that partially written firmware
//will not be bootable
skip = ENCRYPTED_BLOCK_SIZE;
_skipBuffer = (uint8_t*)malloc(skip);
if(!_skipBuffer){
log_e("malloc failed");
return false;
}
memcpy(_skipBuffer, _buffer, skip);
} }
if (!_progress && _progress_callback) { if (!_progress && _progress_callback) {
_progress_callback(0, _size); _progress_callback(0, _size);
} }
if(!ESP.flashEraseSector((_partition->address + _progress)/SPI_FLASH_SEC_SIZE)){ if(!ESP.partitionEraseRange(_partition, _progress, SPI_FLASH_SEC_SIZE)){
_abort(UPDATE_ERROR_ERASE); _abort(UPDATE_ERROR_ERASE);
return false; return false;
} }
if (!ESP.flashWrite(_partition->address + _progress, (uint32_t*)_buffer, _bufferLen)) { if (!ESP.partitionWrite(_partition, _progress + skip, (uint32_t*)_buffer + skip/sizeof(uint32_t), _bufferLen - skip)) {
_abort(UPDATE_ERROR_WRITE); _abort(UPDATE_ERROR_WRITE);
return false; return false;
} }
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment