Commit 6263bccd authored by TMRh20's avatar TMRh20

Extended timeouts, txStandBy changes

- For use in noisy or low signal scenarios
- Allows user specified timeout period of extended duration
- Modified txStandBy() and writeBlocking() functions to rely on a user
defined timeout period, automatic retries and payload reUse
parent 0ddec525
...@@ -471,25 +471,27 @@ bool RF24::write( const void* buf, uint8_t len ) ...@@ -471,25 +471,27 @@ bool RF24::write( const void* buf, uint8_t len )
/****************************************************************************/ /****************************************************************************/
//For general use, the interrupt flags are not important to clear //For general use, the interrupt flags are not important to clear
bool RF24::writeBlocking( const void* buf, uint8_t len ) bool RF24::writeBlocking( const void* buf, uint8_t len, unsigned long timeout )
{ {
//Block until the FIFO is NOT full. //Block until the FIFO is NOT full.
//Keep track of the MAX retries and set auto-retry if seeing failures //Keep track of the MAX retries and set auto-retry if seeing failures
//This way the FIFO will fill up and allow blocking until packets go through //This way the FIFO will fill up and allow blocking until packets go through
//The radio will auto-clear everything in the FIFO as long as CE remains high //The radio will auto-clear everything in the FIFO as long as CE remains high
unsigned long timer = millis(); //Get the time that the payload transmission started
while ( (read_register(FIFO_STATUS) & _BV(FIFO_FULL))){ //Blocking only if FIFO is full. This will loop and block until TX is successful while ( (read_register(FIFO_STATUS) & _BV(FIFO_FULL))){ //Blocking only if FIFO is full. This will loop and block until TX is successful
if( get_status() & _BV(MAX_RT)){ if( get_status() & _BV(MAX_RT)){ //If MAX Retries have been reached
reUseTX(); //Set re-transmit reUseTX(); //Set re-transmit and clear the MAX_RT interrupt flag
} }
if(millis() - timer > timeout){ return 0; } //If this payload has exceeded the user-defined timeout, exit and return 0
} }
//Start Writing
startFastWrite(buf,len);
return 1; //Start Writing
startFastWrite(buf,len); //Write the payload if a buffer is clear
return 1; //Return 1 to indicate successful transmission
} }
...@@ -504,7 +506,6 @@ void RF24::reUseTX(){ ...@@ -504,7 +506,6 @@ void RF24::reUseTX(){
/****************************************************************************/ /****************************************************************************/
//This is for when every bit of data is important
bool RF24::writeFast( const void* buf, uint8_t len ) bool RF24::writeFast( const void* buf, uint8_t len )
{ {
//Block until the FIFO is NOT full. //Block until the FIFO is NOT full.
...@@ -516,9 +517,7 @@ bool RF24::writeFast( const void* buf, uint8_t len ) ...@@ -516,9 +517,7 @@ bool RF24::writeFast( const void* buf, uint8_t len )
while ( (read_register(FIFO_STATUS) & _BV(FIFO_FULL))){ //Blocking only if FIFO is full. This will loop and block until TX is successful while ( (read_register(FIFO_STATUS) & _BV(FIFO_FULL))){ //Blocking only if FIFO is full. This will loop and block until TX is successful
if( get_status() & _BV(MAX_RT)){ if( get_status() & _BV(MAX_RT)){
write_register(STATUS,_BV(MAX_RT) ); //Clear max retry flag
reUseTX(); //Set re-transmit reUseTX(); //Set re-transmit
delayMicroseconds(15); //CE needs to stay high for 10us, for TX_REUSE to engage
return 0; //Return 0. The previous payload has been retransmitted return 0; //Return 0. The previous payload has been retransmitted
//From the user perspective, if you get a 0, just keep trying to send the same payload //From the user perspective, if you get a 0, just keep trying to send the same payload
} }
...@@ -565,23 +564,31 @@ void RF24::startWrite( const void* buf, uint8_t len ) ...@@ -565,23 +564,31 @@ void RF24::startWrite( const void* buf, uint8_t len )
} }
bool RF24::txStandBy(){ bool RF24::txStandBy(){
txStandBy(0); while( ! (read_register(FIFO_STATUS) & _BV(TX_EMPTY)) ){
if( get_status() & _BV(MAX_RT)){
write_register(STATUS,_BV(MAX_RT) );
flush_tx(); //Non blocking, flush the data
ce(LOW); //Set STANDBY-I mode
return 0;
}
}
ce(LOW); //Set STANDBY-I mode
return 1;
} }
bool RF24::txStandBy(bool block){ bool RF24::txStandBy(unsigned long timeout){
unsigned long start = millis();
while( ! (read_register(FIFO_STATUS) & _BV(TX_EMPTY)) ){ while( ! (read_register(FIFO_STATUS) & _BV(TX_EMPTY)) ){
if( get_status() & _BV(MAX_RT)){ if( get_status() & _BV(MAX_RT)){
write_register(STATUS,_BV(MAX_RT) ); write_register(STATUS,_BV(MAX_RT) );
if(block){ if(timeout > 0){
ce(LOW); //Set re-transmit ce(LOW); //Set re-transmit
ce(HIGH); ce(HIGH);
delayMicroseconds(15); if(millis() - start > timeout){ ce(LOW); flush_tx(); return 0; }
}else{
flush_tx(); //Non blocking, flush the data
ce(LOW); //Set STANDBY-I mode
return 0;
} }
} }
} }
......
This diff is collapsed.
...@@ -89,8 +89,8 @@ void loop(void) ...@@ -89,8 +89,8 @@ void loop(void)
unsigned long time = millis(); // Take the time, and send it. This will block until complete unsigned long time = millis(); // Take the time, and send it. This will block until complete
printf("Now sending %lu...",time); printf("Now sending %lu...",time);
bool ok = radio.writeFast( &time, sizeof(unsigned long) );//New function for proper use of FIFO buffers radio.writeFast( &time, sizeof(unsigned long) ); //New function for proper use of FIFO buffers
while( ! radio.txStandBy() ){} //Called when STANDBY-I mode is engaged (User is finished sending) bool ok = radio.txStandBy(); //Called when STANDBY-I mode is engaged (User is finished sending)
if (!ok) if (!ok)
printf("failed.\n\r"); printf("failed.\n\r");
...@@ -142,8 +142,8 @@ void loop(void) ...@@ -142,8 +142,8 @@ void loop(void)
radio.stopListening(); // First, stop listening so we can talk radio.stopListening(); // First, stop listening so we can talk
radio.write( &got_time, sizeof(unsigned long) ); // Send the final one back. radio.writeFast( &got_time, sizeof(unsigned long) ); // Send the final one back.
radio.txStandBy();
radio.startListening(); // Now, resume listening so we catch the next packets. radio.startListening(); // Now, resume listening so we catch the next packets.
//printf("Sent response.\n\r"); //printf("Sent response.\n\r");
...@@ -163,17 +163,16 @@ void loop(void) ...@@ -163,17 +163,16 @@ void loop(void)
printf("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK\n\r"); printf("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK\n\r");
role = role_ping_out; // Become the primary transmitter (ping out) role = role_ping_out; // Become the primary transmitter (ping out)
//radio.openWritingPipe(pipes[0]); radio.openWritingPipe(pipes[0]);
//radio.openReadingPipe(1,pipes[1]); radio.openReadingPipe(1,pipes[1]);
} }
else if ( c == 'R' && role == role_ping_out ) else if ( c == 'R' && role == role_ping_out )
{ {
printf("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK\n\r"); printf("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK\n\r");
role = role_pong_back; // Become the primary receiver (pong back) role = role_pong_back; // Become the primary receiver (pong back)
//radio.openWritingPipe(pipes[1]); radio.openWritingPipe(pipes[1]);
//radio.openReadingPipe(1,pipes[0]); radio.openReadingPipe(1,pipes[0]);
} }
} }
} }
// vim:cin:ai:sts=2 sw=2 ft=cpp
\ No newline at end of file
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* Example for Getting Started with nRF24L01+ radios.
*
* This is an example of how to use the RF24 class. Write this sketch to two
* different nodes. Put one of the nodes into 'transmit' mode by connecting
* with the serial monitor and sending a 'T'. The ping node sends the current
* time to the pong node, which responds by sending the value back. The ping
* node can then see how long the whole cycle took.
*/
#include <SPI.h>
#include "nRF24L01.h"
#include "RF24.h"
#include "printf.h"
//
// Hardware configuration
//
// Set up nRF24L01 radio on SPI bus plus pins 9 & 10
RF24 radio(9,10);
//
// Topology
//
// Radio pipe addresses for the 2 nodes to communicate.
const uint64_t pipes[2] = { 0xF0F0F0F0E1LL, 0xF0F0F0F0D2LL };
//
// Role management
//
// Set up role. This sketch uses the same software for all the nodes
// in this system. Doing so greatly simplifies testing.
//
// The various roles supported by this sketch
typedef enum { role_ping_out = 1, role_pong_back } role_e;
// The debug-friendly names of those roles
const char* role_friendly_name[] = { "invalid", "Ping out", "Pong back"};
// The role of the current running sketch
role_e role = role_pong_back;
void setup(void)
{
//
// Print preamble
//
Serial.begin(57600);
printf_begin();
printf("\n\rRF24/examples/GettingStarted/\n\r");
printf("ROLE: %s\n\r",role_friendly_name[role]);
printf("*** PRESS 'T' to begin transmitting to the other node\n\r");
//
// Setup and configure rf radio
//
radio.begin();
// optionally, increase the delay between retries & # of retries
radio.setRetries(15,15);
// optionally, reduce the payload size. seems to
// improve reliability
//radio.setPayloadSize(8);
//
// Open pipes to other nodes for communication
//
// This simple sketch opens two pipes for these two nodes to communicate
// back and forth.
// Open 'our' pipe for writing
// Open the 'other' pipe for reading, in position #1 (we can have up to 5 pipes open for reading)
//if ( role == role_ping_out )
{
//radio.openWritingPipe(pipes[0]);
radio.openReadingPipe(1,pipes[1]);
}
//else
{
//radio.openWritingPipe(pipes[1]);
//radio.openReadingPipe(1,pipes[0]);
}
//
// Start listening
//
radio.startListening();
//
// Dump the configuration of the rf unit for debugging
//
radio.printDetails();
}
void loop(void)
{
//
// Ping out role. Repeatedly send the current time
//
if (role == role_ping_out)
{
// First, stop listening so we can talk.
radio.stopListening();
// Take the time, and send it. This will block until complete
unsigned long time = millis();
printf("Now sending %lu...",time);
bool ok = radio.write( &time, sizeof(unsigned long) );
if (ok)
printf("ok...");
else
printf("failed.\n\r");
// Now, continue listening
radio.startListening();
// Wait here until we get a response, or timeout (250ms)
unsigned long started_waiting_at = millis();
bool timeout = false;
while ( ! radio.available() && ! timeout )
if (millis() - started_waiting_at > 200 )
timeout = true;
// Describe the results
if ( timeout )
{
printf("Failed, response timed out.\n\r");
}
else
{
// Grab the response, compare, and send to debugging spew
unsigned long got_time;
radio.read( &got_time, sizeof(unsigned long) );
// Spew it
printf("Got response %lu, round-trip delay: %lu\n\r",got_time,millis()-got_time);
}
// Try again 1s later
delay(1000);
}
//
// Pong back role. Receive each packet, dump it out, and send it back
//
if ( role == role_pong_back )
{
// if there is data ready
if ( radio.available() )
{
// Dump the payloads until we've gotten everything
unsigned long got_time;
bool done = false;
while (!done)
{
// Fetch the payload, and see if this was the last one.
done = radio.read( &got_time, sizeof(unsigned long) );
// Spew it
printf("Got payload %lu...",got_time);
// Delay just a little bit to let the other unit
// make the transition to receiver
delay(20);
}
// First, stop listening so we can talk
radio.stopListening();
// Send the final one back.
radio.write( &got_time, sizeof(unsigned long) );
printf("Sent response.\n\r");
// Now, resume listening so we catch the next packets.
radio.startListening();
}
}
//
// Change roles
//
if ( Serial.available() )
{
char c = toupper(Serial.read());
if ( c == 'T' && role == role_pong_back )
{
printf("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK\n\r");
// Become the primary transmitter (ping out)
role = role_ping_out;
radio.openWritingPipe(pipes[0]);
radio.openReadingPipe(1,pipes[1]);
}
else if ( c == 'R' && role == role_ping_out )
{
printf("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK\n\r");
// Become the primary receiver (pong back)
role = role_pong_back;
radio.openWritingPipe(pipes[1]);
radio.openReadingPipe(1,pipes[0]);
}
}
}
// vim:cin:ai:sts=2 sw=2 ft=cpp
/*
TMRh20 2014
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/** Reliably transmitting large volumes of data with a low signal or in noisy environments
* This example demonstrates data transfer functionality with the use of auto-retry
and auto-reUse functionality enabled. This sketch demonstrates how a user can extend
the auto-retry functionality to any chosen time period, preventing data loss and ensuring
the consistency of data.
This sketh demonstrates use of the writeBlocking() functionality, and extends the standard
retry functionality of the radio. Payloads will be auto-retried until successful or the
extended timeout period is reached.
*/
#include <SPI.h>
#include "nRF24L01.h"
#include "RF24.h"
#include "printf.h"
/************* USER Configuration *****************************/
RF24 radio(48,49); // Set up nRF24L01 radio on SPI bus plus pins 7 & 8
unsigned long timeoutPeriod = 3000; // Set a user-defined timeout period. With auto-retransmit set to (15,15) retransmission will take up to 60ms and as little as 7.5ms with it set to (1,15).
// With a timeout period of 1000, the radio will retry each payload for up to 1 second before giving up on the transmission and starting over
/***************************************************************/
const uint64_t pipes[2] = { 0xABCDABCD71LL, 0x544d52687CLL }; // Radio pipe addresses for the 2 nodes to communicate.
byte data[32]; //Data buffer
volatile unsigned long counter;
unsigned long rxTimer,startTime, stopTime, payloads = 0;
bool TX=1,RX=0,role=0, transferInProgress = 0;
void setup(void) {
Serial.begin(57600);
printf_begin();
radio.begin(); // Setup and configure rf radio
radio.setChannel(1); // Set the channel
radio.setPALevel(RF24_PA_LOW); // Set PA LOW for this demonstration. We want the radio to be as lossy as possible for this example.
radio.setDataRate(RF24_1MBPS); // Raise the data rate to reduce transmission distance and increase lossiness
radio.setAutoAck(1); // Ensure autoACK is enabled
radio.setRetries(2,15); // Optionally, increase the delay between retries. Want the number of auto-retries as high as possible (15)
radio.setCRCLength(RF24_CRC_16); // Set CRC length to 16-bit to ensure quality of data
radio.openWritingPipe(pipes[0]); // Open the default reading and writing pipe
radio.openReadingPipe(1,pipes[1]);
radio.startListening(); // Start listening
radio.printDetails(); // Dump the configuration of the rf unit for debugging
printf("\n\rRF24/examples/Transfer Rates/\n\r");
printf("*** PRESS 'T' to begin transmitting to the other node\n\r");
randomSeed(analogRead(0)); //Seed for random number generation
for(int i=0; i<32; i++){
data[i] = random(255); //Load the buffer with random data
}
radio.powerUp(); //Power up the radio
}
void loop(void){
if(role == TX){
delay(2000); // Pause for a couple seconds between transfers
printf("Initiating Extended Timeout Data Transfer\n\r");
unsigned long cycles = 1000; // Change this to a higher or lower number. This is the number of payloads that will be sent.
unsigned long transferCMD[] = {'H','S',cycles }; // Indicate to the other radio that we are starting, and provide the number of payloads that will be sent
radio.writeFast(&transferCMD,12); // Send the transfer command
if(radio.txStandBy(timeoutPeriod)){ // If transfer initiation was successful, do the following
startTime = millis(); // For calculating transfer rate
boolean timedOut = 0; // Boolean for keeping track of failures
for(int i=0; i<cycles; i++){ // Loop through a number of cycles
data[0] = i; // Change the first byte of the payload for identification
if(!radio.writeBlocking(&data,32,timeoutPeriod)){ // If retries are failing and the user defined timeout is exceeded
timedOut = 1; // Indicate failure
counter = cycles; // Set the fail count to maximum
break; // Break out of the for loop
}
}
stopTime = millis(); // Capture the time of completion or failure
//This should be called to wait for completion and put the radio in standby mode after transmission, returns 0 if data still in FIFO (timed out), 1 if success
if(timedOut){ radio.txStandBy(); } //Partially blocking standby, blocks until success or max retries. FIFO flushed if auto timeout reached
else{ radio.txStandBy(timeoutPeriod); } //Standby, block until FIFO empty (sent) or user specified timeout reached. FIFO flushed if user timeout reached.
}else{
Serial.println("Communication not established"); //If unsuccessful initiating transfer, exit and retry later
}
float rate = cycles * 32 / (stopTime - startTime); //Display results:
Serial.print("Transfer complete at "); Serial.print(rate); printf(" KB/s \n\r");
Serial.print(counter);
Serial.print(" of ");
Serial.print(cycles); Serial.println(" Packets Failed to Send");
counter = 0;
}
if(role == RX){
if(!transferInProgress){ // If a bulk data transfer has not been started
if(radio.available()){
radio.read(&data,32); //Read any available payloads for analysis
if(data[0] == 'H' && data[4] == 'S'){ // If a bulk data transfer command has been received
payloads = data[8]; // Read the first two bytes of the unsigned long. Need to read the 3rd and 4th if sending more than 65535 payloads
payloads |= data[9] << 8; // This is the number of payloads that will be sent
counter = 0; // Reset the payload counter to 0
transferInProgress = 1; // Indicate it has started
startTime = rxTimer = millis(); // Capture the start time to measure transfer rate and calculate timeouts
}
}
}else{
if(radio.available()){ // If in bulk transfer mode, and a payload is available
radio.read(&data,32); // Read the payload
rxTimer = millis(); // Reset the timeout timer
counter++; // Keep a count of received payloads
}else
if(millis() - rxTimer > timeoutPeriod){ // If no data available, check the timeout period
Serial.println("Transfer Failed"); // If per-payload timeout exceeeded, end the transfer
transferInProgress = 0;
}else
if(counter >= payloads){ // If the specified number of payloads is reached, transfer is completed
startTime = millis() - startTime; // Calculate the total time spent during transfer
float numBytes = counter*32; // Calculate the number of bytes transferred
Serial.print("Rate: "); // Print the transfer rate and number of payloads
Serial.print(numBytes/startTime);
Serial.println(" KB/s");
printf("Payload Count: %d \n\r", counter);
transferInProgress = 0; // End the transfer as complete
}
}
}
//
// Change roles
//
if ( Serial.available() )
{
char c = toupper(Serial.read());
if ( c == 'T' && role == RX )
{
printf("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK\n\r");
radio.openWritingPipe(pipes[1]);
radio.openReadingPipe(1,pipes[0]);
radio.stopListening();
role = TX; // Become the primary transmitter (ping out)
}
else if ( c == 'R' && role == TX )
{
radio.openWritingPipe(pipes[0]);
radio.openReadingPipe(1,pipes[1]);
radio.startListening();
printf("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK\n\r");
role = RX; // Become the primary receiver (pong back)
}
}
}
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* @file printf.h
*
* Setup necessary to direct stdout to the Arduino Serial library, which
* enables 'printf'
*/
#ifndef __PRINTF_H__
#define __PRINTF_H__
#ifdef ARDUINO
int serial_putc( char c, FILE * )
{
Serial.write( c );
return c;
}
void printf_begin(void)
{
fdevopen( &serial_putc, 0 );
}
#else
#error This example is only for use on Arduino.
#endif // ARDUINO
#endif // __PRINTF_H__
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment