Unverified Commit 352af864 authored by Jan Procházka's avatar Jan Procházka Committed by GitHub

Analog Continuous mode API (#8715)

* Adds Analog Continuous mode API

* fix when stopping/starting ADC data are not complete

* Added example

* fix size check

* update frequency in example

* set buffer to NULL if error occurs

* add docs

* set buffer to null on error

* fix example

* update docs

* fix example

* change return value to bool type

* updated adc modes description in docs

* Add empty line at the end of sketch
parent b98b52a1
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // Copyright 2015-2023 Espressif Systems (Shanghai) PTE LTD
// //
// Licensed under the Apache License, Version 2.0 (the "License"); // Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License. // you may not use this file except in compliance with the License.
...@@ -18,14 +18,28 @@ ...@@ -18,14 +18,28 @@
#include "esp32-hal.h" #include "esp32-hal.h"
#include "esp32-hal-periman.h" #include "esp32-hal-periman.h"
#include "esp_adc/adc_oneshot.h" #include "esp_adc/adc_oneshot.h"
#include "esp_adc/adc_continuous.h"
#include "esp_adc/adc_cali_scheme.h" #include "esp_adc/adc_cali_scheme.h"
static uint8_t __analogAttenuation = ADC_11db; static uint8_t __analogAttenuation = ADC_11db;
static uint8_t __analogWidth = SOC_ADC_RTC_MAX_BITWIDTH; static uint8_t __analogWidth = SOC_ADC_RTC_MAX_BITWIDTH;
static uint8_t __analogReturnedWidth = SOC_ADC_RTC_MAX_BITWIDTH; static uint8_t __analogReturnedWidth = SOC_ADC_RTC_MAX_BITWIDTH;
adc_oneshot_unit_handle_t adc_handle[SOC_ADC_PERIPH_NUM]; typedef struct {
adc_cali_handle_t adc_cali_handle[SOC_ADC_PERIPH_NUM]; voidFuncPtr fn;
void* arg;
} interrupt_config_t;
typedef struct {
adc_oneshot_unit_handle_t adc_oneshot_handle;
adc_continuous_handle_t adc_continuous_handle;
interrupt_config_t adc_interrupt_handle;
adc_cali_handle_t adc_cali_handle;
uint32_t buffer_size;
uint32_t conversion_frame_size;
} adc_handle_t;
adc_handle_t adc_handle[SOC_ADC_PERIPH_NUM];
static bool adcDetachBus(void * pin){ static bool adcDetachBus(void * pin){
adc_channel_t adc_channel; adc_channel_t adc_channel;
...@@ -42,11 +56,23 @@ static bool adcDetachBus(void * pin){ ...@@ -42,11 +56,23 @@ static bool adcDetachBus(void * pin){
} }
if(used_channels == 1){ //only 1 channel is used if(used_channels == 1){ //only 1 channel is used
esp_err_t err = adc_oneshot_del_unit(adc_handle[adc_unit]); esp_err_t err = adc_oneshot_del_unit(adc_handle[adc_unit].adc_oneshot_handle);
if(err != ESP_OK){
return false;
}
adc_handle[adc_unit].adc_oneshot_handle = NULL;
#if ADC_CALI_SCHEME_CURVE_FITTING_SUPPORTED
err = adc_cali_delete_scheme_curve_fitting(adc_handle[adc_unit].adc_cali_handle);
if(err != ESP_OK){ if(err != ESP_OK){
return false; return false;
} }
adc_handle[adc_unit] = NULL; #elif !defined(CONFIG_IDF_TARGET_ESP32H2)
err = adc_cali_delete_scheme_line_fitting(adc_handle[adc_unit].adc_cali_handle);
if(err != ESP_OK){
return false;
}
#endif
adc_handle[adc_unit].adc_cali_handle = NULL;
} }
return true; return true;
} }
...@@ -59,12 +85,12 @@ esp_err_t __analogChannelConfig(adc_bitwidth_t width, adc_attenuation_t atten, i ...@@ -59,12 +85,12 @@ esp_err_t __analogChannelConfig(adc_bitwidth_t width, adc_attenuation_t atten, i
}; };
if(pin == -1){ //Reconfigure all used analog pins/channels if(pin == -1){ //Reconfigure all used analog pins/channels
for(int adc_unit = 0 ; adc_unit < SOC_ADC_PERIPH_NUM; adc_unit++){ for(int adc_unit = 0 ; adc_unit < SOC_ADC_PERIPH_NUM; adc_unit++){
if(adc_handle[adc_unit] != NULL){ if(adc_handle[adc_unit].adc_oneshot_handle != NULL){
for (uint8_t channel = 0; channel < SOC_ADC_CHANNEL_NUM(adc_unit); channel++){ for (uint8_t channel = 0; channel < SOC_ADC_CHANNEL_NUM(adc_unit); channel++){
int io_pin; int io_pin;
adc_oneshot_channel_to_io( adc_unit, channel, &io_pin); adc_oneshot_channel_to_io( adc_unit, channel, &io_pin);
if(perimanGetPinBusType(io_pin) == ESP32_BUS_TYPE_ADC_ONESHOT){ if(perimanGetPinBusType(io_pin) == ESP32_BUS_TYPE_ADC_ONESHOT){
err = adc_oneshot_config_channel(adc_handle[adc_unit], channel, &config); err = adc_oneshot_config_channel(adc_handle[adc_unit].adc_oneshot_handle, channel, &config);
if(err != ESP_OK){ if(err != ESP_OK){
log_e("adc_oneshot_config_channel failed with error: %d", err); log_e("adc_oneshot_config_channel failed with error: %d", err);
return err; return err;
...@@ -72,10 +98,10 @@ esp_err_t __analogChannelConfig(adc_bitwidth_t width, adc_attenuation_t atten, i ...@@ -72,10 +98,10 @@ esp_err_t __analogChannelConfig(adc_bitwidth_t width, adc_attenuation_t atten, i
} }
} }
//ADC calibration reconfig only if all channels are updated //ADC calibration reconfig only if all channels are updated
if(adc_cali_handle[adc_unit] != NULL){ if(adc_handle[adc_unit].adc_cali_handle != NULL){
#if ADC_CALI_SCHEME_CURVE_FITTING_SUPPORTED #if ADC_CALI_SCHEME_CURVE_FITTING_SUPPORTED
log_d("Deleting ADC_UNIT_%d cali handle",adc_unit); log_d("Deleting ADC_UNIT_%d cali handle",adc_unit);
err = adc_cali_delete_scheme_curve_fitting(adc_cali_handle[adc_unit]); err = adc_cali_delete_scheme_curve_fitting(adc_handle[adc_unit].adc_cali_handle);
if(err != ESP_OK){ if(err != ESP_OK){
log_e("adc_cali_delete_scheme_curve_fitting failed with error: %d", err); log_e("adc_cali_delete_scheme_curve_fitting failed with error: %d", err);
return err; return err;
...@@ -86,14 +112,14 @@ esp_err_t __analogChannelConfig(adc_bitwidth_t width, adc_attenuation_t atten, i ...@@ -86,14 +112,14 @@ esp_err_t __analogChannelConfig(adc_bitwidth_t width, adc_attenuation_t atten, i
.bitwidth = width, .bitwidth = width,
}; };
log_d("Creating ADC_UNIT_%d curve cali handle",adc_unit); log_d("Creating ADC_UNIT_%d curve cali handle",adc_unit);
err = adc_cali_create_scheme_curve_fitting(&cali_config, &adc_cali_handle[adc_unit]); err = adc_cali_create_scheme_curve_fitting(&cali_config, &adc_handle[adc_unit].adc_cali_handle);
if(err != ESP_OK){ if(err != ESP_OK){
log_e("adc_cali_create_scheme_curve_fitting failed with error: %d", err); log_e("adc_cali_create_scheme_curve_fitting failed with error: %d", err);
return err; return err;
} }
#elif !defined(CONFIG_IDF_TARGET_ESP32C6) && !defined(CONFIG_IDF_TARGET_ESP32H2) //ADC_CALI_SCHEME_LINE_FITTING_SUPPORTED #elif !defined(CONFIG_IDF_TARGET_ESP32H2) //ADC_CALI_SCHEME_LINE_FITTING_SUPPORTED
log_d("Deleting ADC_UNIT_%d line cali handle",adc_unit); log_d("Deleting ADC_UNIT_%d line cali handle",adc_unit);
err = adc_cali_delete_scheme_line_fitting(adc_cali_handle[adc_unit]); err = adc_cali_delete_scheme_line_fitting(adc_handle[adc_unit].adc_cali_handle);
if(err != ESP_OK){ if(err != ESP_OK){
log_e("adc_cali_delete_scheme_line_fitting failed with error: %d", err); log_e("adc_cali_delete_scheme_line_fitting failed with error: %d", err);
return err; return err;
...@@ -104,7 +130,7 @@ esp_err_t __analogChannelConfig(adc_bitwidth_t width, adc_attenuation_t atten, i ...@@ -104,7 +130,7 @@ esp_err_t __analogChannelConfig(adc_bitwidth_t width, adc_attenuation_t atten, i
.bitwidth = width, .bitwidth = width,
}; };
log_d("Creating ADC_UNIT_%d line cali handle",adc_unit); log_d("Creating ADC_UNIT_%d line cali handle",adc_unit);
err = adc_cali_create_scheme_line_fitting(&cali_config, &adc_cali_handle[adc_unit]); err = adc_cali_create_scheme_line_fitting(&cali_config, &adc_handle[adc_unit].adc_cali_handle);
if(err != ESP_OK){ if(err != ESP_OK){
log_e("adc_cali_create_scheme_line_fitting failed with error: %d", err); log_e("adc_cali_create_scheme_line_fitting failed with error: %d", err);
return err; return err;
...@@ -128,7 +154,7 @@ esp_err_t __analogChannelConfig(adc_bitwidth_t width, adc_attenuation_t atten, i ...@@ -128,7 +154,7 @@ esp_err_t __analogChannelConfig(adc_bitwidth_t width, adc_attenuation_t atten, i
log_e("Pin %u is not ADC pin!", pin); log_e("Pin %u is not ADC pin!", pin);
return err; return err;
} }
err = adc_oneshot_config_channel(adc_handle[adc_unit], channel, &config); err = adc_oneshot_config_channel(adc_handle[adc_unit].adc_oneshot_handle, channel, &config);
if(err != ESP_OK){ if(err != ESP_OK){
log_e("adc_oneshot_config_channel failed with error: %d", err); log_e("adc_oneshot_config_channel failed with error: %d", err);
return err; return err;
...@@ -174,12 +200,12 @@ void __analogSetWidth(uint8_t bits){ ...@@ -174,12 +200,12 @@ void __analogSetWidth(uint8_t bits){
esp_err_t __analogInit(uint8_t pin, adc_channel_t channel, adc_unit_t adc_unit){ esp_err_t __analogInit(uint8_t pin, adc_channel_t channel, adc_unit_t adc_unit){
esp_err_t err = ESP_OK; esp_err_t err = ESP_OK;
if(adc_handle[adc_unit] == NULL) { if(adc_handle[adc_unit].adc_oneshot_handle == NULL) {
adc_oneshot_unit_init_cfg_t init_config1 = { adc_oneshot_unit_init_cfg_t init_config1 = {
.unit_id = adc_unit, .unit_id = adc_unit,
.ulp_mode = ADC_ULP_MODE_DISABLE, .ulp_mode = ADC_ULP_MODE_DISABLE,
}; };
err = adc_oneshot_new_unit(&init_config1, &adc_handle[adc_unit]); err = adc_oneshot_new_unit(&init_config1, &adc_handle[adc_unit].adc_oneshot_handle);
if(err != ESP_OK){ if(err != ESP_OK){
log_e("adc_oneshot_new_unit failed with error: %d", err); log_e("adc_oneshot_new_unit failed with error: %d", err);
...@@ -197,7 +223,7 @@ esp_err_t __analogInit(uint8_t pin, adc_channel_t channel, adc_unit_t adc_unit){ ...@@ -197,7 +223,7 @@ esp_err_t __analogInit(uint8_t pin, adc_channel_t channel, adc_unit_t adc_unit){
.atten = __analogAttenuation, .atten = __analogAttenuation,
}; };
err = adc_oneshot_config_channel(adc_handle[adc_unit], channel, &config); err = adc_oneshot_config_channel(adc_handle[adc_unit].adc_oneshot_handle, channel, &config);
if(err != ESP_OK){ if(err != ESP_OK){
log_e("adc_oneshot_config_channel failed with error: %d", err); log_e("adc_oneshot_config_channel failed with error: %d", err);
return err; return err;
...@@ -245,7 +271,7 @@ uint16_t __analogRead(uint8_t pin){ ...@@ -245,7 +271,7 @@ uint16_t __analogRead(uint8_t pin){
} }
} }
adc_oneshot_read(adc_handle[adc_unit], channel, &value); adc_oneshot_read(adc_handle[adc_unit].adc_oneshot_handle, channel, &value);
return mapResolution(value); return mapResolution(value);
} }
...@@ -269,7 +295,7 @@ uint32_t __analogReadMilliVolts(uint8_t pin){ ...@@ -269,7 +295,7 @@ uint32_t __analogReadMilliVolts(uint8_t pin){
} }
} }
if(adc_cali_handle[adc_unit] == NULL){ if(adc_handle[adc_unit].adc_cali_handle == NULL){
log_d("Creating cali handle for ADC_%d", adc_unit); log_d("Creating cali handle for ADC_%d", adc_unit);
#if ADC_CALI_SCHEME_CURVE_FITTING_SUPPORTED #if ADC_CALI_SCHEME_CURVE_FITTING_SUPPORTED
adc_cali_curve_fitting_config_t cali_config = { adc_cali_curve_fitting_config_t cali_config = {
...@@ -277,14 +303,14 @@ uint32_t __analogReadMilliVolts(uint8_t pin){ ...@@ -277,14 +303,14 @@ uint32_t __analogReadMilliVolts(uint8_t pin){
.atten = __analogAttenuation, .atten = __analogAttenuation,
.bitwidth = __analogWidth, .bitwidth = __analogWidth,
}; };
err = adc_cali_create_scheme_curve_fitting(&cali_config, &adc_cali_handle[adc_unit]); err = adc_cali_create_scheme_curve_fitting(&cali_config, &adc_handle[adc_unit].adc_cali_handle);
#elif !defined(CONFIG_IDF_TARGET_ESP32C6) && !defined(CONFIG_IDF_TARGET_ESP32H2) //ADC_CALI_SCHEME_LINE_FITTING_SUPPORTED #elif !defined(CONFIG_IDF_TARGET_ESP32H2) //ADC_CALI_SCHEME_LINE_FITTING_SUPPORTED
adc_cali_line_fitting_config_t cali_config = { adc_cali_line_fitting_config_t cali_config = {
.unit_id = adc_unit, .unit_id = adc_unit,
.bitwidth = __analogWidth, .bitwidth = __analogWidth,
.atten = __analogAttenuation, .atten = __analogAttenuation,
}; };
err = adc_cali_create_scheme_line_fitting(&cali_config, &adc_cali_handle[adc_unit]); err = adc_cali_create_scheme_line_fitting(&cali_config, &adc_handle[adc_unit].adc_cali_handle);
#endif #endif
if(err != ESP_OK){ if(err != ESP_OK){
log_e("adc_cali_create_scheme_x failed!"); log_e("adc_cali_create_scheme_x failed!");
...@@ -292,7 +318,7 @@ uint32_t __analogReadMilliVolts(uint8_t pin){ ...@@ -292,7 +318,7 @@ uint32_t __analogReadMilliVolts(uint8_t pin){
} }
} }
err = adc_oneshot_get_calibrated_result(adc_handle[adc_unit], adc_cali_handle[adc_unit], channel, &value); err = adc_oneshot_get_calibrated_result(adc_handle[adc_unit].adc_oneshot_handle, adc_handle[adc_unit].adc_cali_handle, channel, &value);
if(err != ESP_OK){ if(err != ESP_OK){
log_e("adc_oneshot_get_calibrated_result failed!"); log_e("adc_oneshot_get_calibrated_result failed!");
return 0; return 0;
...@@ -310,4 +336,357 @@ extern void analogSetPinAttenuation(uint8_t pin, adc_attenuation_t attenuation) ...@@ -310,4 +336,357 @@ extern void analogSetPinAttenuation(uint8_t pin, adc_attenuation_t attenuation)
extern void analogSetWidth(uint8_t bits) __attribute__ ((weak, alias("__analogSetWidth"))); extern void analogSetWidth(uint8_t bits) __attribute__ ((weak, alias("__analogSetWidth")));
#endif #endif
/*
* ADC Continuous mode
*/
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2
#define ADC_OUTPUT_TYPE ADC_DIGI_OUTPUT_FORMAT_TYPE1
#define ADC_GET_CHANNEL(p_data) ((p_data)->type1.channel)
#define ADC_GET_DATA(p_data) ((p_data)->type1.data)
#else
#define ADC_OUTPUT_TYPE ADC_DIGI_OUTPUT_FORMAT_TYPE2
#define ADC_GET_CHANNEL(p_data) ((p_data)->type2.channel)
#define ADC_GET_DATA(p_data) ((p_data)->type2.data)
#endif
static uint8_t __adcContinuousAtten = ADC_11db;
static uint8_t __adcContinuousWidth = SOC_ADC_DIGI_MAX_BITWIDTH;
static uint8_t used_adc_channels = 0;
adc_continuos_data_t * adc_result = NULL;
static bool adcContinuousDetachBus(void * adc_unit_number){
adc_unit_t adc_unit = (adc_unit_t)adc_unit_number - 1;
if(adc_handle[adc_unit].adc_continuous_handle == NULL){
return true;
}
else
{
esp_err_t err = adc_continuous_deinit(adc_handle[adc_unit].adc_continuous_handle);
if(err != ESP_OK){
return false;
}
adc_handle[adc_unit].adc_continuous_handle = NULL;
#if ADC_CALI_SCHEME_CURVE_FITTING_SUPPORTED
err = adc_cali_delete_scheme_curve_fitting(adc_handle[adc_unit].adc_cali_handle);
if(err != ESP_OK){
return false;
}
#elif !defined(CONFIG_IDF_TARGET_ESP32H2)
err = adc_cali_delete_scheme_line_fitting(adc_handle[adc_unit].adc_cali_handle);
if(err != ESP_OK){
return false;
}
#endif
adc_handle[adc_unit].adc_cali_handle = NULL;
//set all used pins to INIT state
for (uint8_t channel = 0; channel < SOC_ADC_CHANNEL_NUM(adc_unit); channel++){
int io_pin;
adc_oneshot_channel_to_io(adc_unit, channel, &io_pin);
if(perimanGetPinBusType(io_pin) == ESP32_BUS_TYPE_ADC_CONT){
if(!perimanSetPinBus(io_pin, ESP32_BUS_TYPE_INIT, NULL)){
return false;
}
}
}
}
return true;
}
bool IRAM_ATTR adcFnWrapper(adc_continuous_handle_t handle, const adc_continuous_evt_data_t *edata, void *args){
interrupt_config_t * isr = (interrupt_config_t*)args;
//Check if edata->size matches conversion_frame_size, else just return from ISR
if(edata->size == adc_handle[0].conversion_frame_size){
if(isr->fn) {
if(isr->arg){
((voidFuncPtrArg)isr->fn)(isr->arg);
} else {
isr->fn();
}
}
}
return false;
}
esp_err_t __analogContinuousInit(adc_channel_t *channel, uint8_t channel_num, adc_unit_t adc_unit, uint32_t sampling_freq_hz){
//Create new ADC continuous handle
adc_continuous_handle_cfg_t adc_config = {
.max_store_buf_size = adc_handle[adc_unit].buffer_size,
.conv_frame_size = adc_handle[adc_unit].conversion_frame_size,
};
esp_err_t err = adc_continuous_new_handle(&adc_config, &adc_handle[adc_unit].adc_continuous_handle);
if(err != ESP_OK){
log_e("adc_continuous_new_handle failed with error: %d", err);
return ESP_FAIL;
}
//Configure adc pins
adc_continuous_config_t dig_cfg = {
.sample_freq_hz = sampling_freq_hz,
.conv_mode = ADC_CONV_SINGLE_UNIT_1,
.format = ADC_OUTPUT_TYPE,
};
adc_digi_pattern_config_t adc_pattern[SOC_ADC_PATT_LEN_MAX] = {0};
dig_cfg.pattern_num = channel_num;
for (int i = 0; i < channel_num; i++) {
adc_pattern[i].atten = __adcContinuousAtten;
adc_pattern[i].channel = channel[i] & 0x7;
adc_pattern[i].unit = ADC_UNIT_1;
adc_pattern[i].bit_width = __adcContinuousWidth;
}
dig_cfg.adc_pattern = adc_pattern;
err = adc_continuous_config(adc_handle[adc_unit].adc_continuous_handle, &dig_cfg);
if(err != ESP_OK){
log_e("adc_continuous_config failed with error: %d", err);
return ESP_FAIL;
}
used_adc_channels = channel_num;
return ESP_OK;
}
bool analogContinuous(uint8_t pins[], size_t pins_count, uint32_t conversions_per_pin, uint32_t sampling_freq_hz, void (*userFunc)(void)){
adc_channel_t channel[pins_count];
adc_unit_t adc_unit;
esp_err_t err = ESP_OK;
//Convert pins to channels and check if all are ADC1s unit
for(int i = 0; i < pins_count; i++){
err = adc_continuous_io_to_channel(pins[i], &adc_unit, &channel[i]);
if(err != ESP_OK){
log_e("Pin %u is not ADC pin!", pins[i]);
return false;
}
if(adc_unit != 0){
log_e("Only ADC1 pins are supported in continuous mode!");
return false;
}
}
//Check if Oneshot and Continous handle exists
if(adc_handle[adc_unit].adc_oneshot_handle != NULL){
log_e("ADC%d is running in oneshot mode. Aborting.", adc_unit+1);
return false;
}
if(adc_handle[adc_unit].adc_continuous_handle != NULL){
log_e("ADC%d continuous is already initialized. To reconfigure call analogContinuousDeinit() first.", adc_unit+1);
return false;
}
//Check sampling frequency
if((sampling_freq_hz < SOC_ADC_SAMPLE_FREQ_THRES_LOW) || (sampling_freq_hz > SOC_ADC_SAMPLE_FREQ_THRES_HIGH)){
log_e("Sampling frequency is out of range. Supported sampling frequencies are %d - %d", SOC_ADC_SAMPLE_FREQ_THRES_LOW, SOC_ADC_SAMPLE_FREQ_THRES_HIGH);
return false;
}
//Set periman deinit function and reset all pins to init state.
perimanSetBusDeinit(ESP32_BUS_TYPE_ADC_CONT, adcContinuousDetachBus);
for(int j = 0; j < pins_count; j++){
if(!perimanSetPinBus(pins[j], ESP32_BUS_TYPE_INIT, NULL)){
return false;
}
}
//Set conversion frame and buffer size (conversion frame must be in multiples of SOC_ADC_DIGI_DATA_BYTES_PER_CONV)
adc_handle[adc_unit].conversion_frame_size = conversions_per_pin * pins_count * SOC_ADC_DIGI_RESULT_BYTES;
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2
uint8_t calc_multiple = adc_handle[adc_unit].conversion_frame_size % SOC_ADC_DIGI_DATA_BYTES_PER_CONV;
if(calc_multiple != 0){
adc_handle[adc_unit].conversion_frame_size = (adc_handle[adc_unit].conversion_frame_size + calc_multiple);
}
#endif
adc_handle[adc_unit].buffer_size = adc_handle[adc_unit].conversion_frame_size * 2;
//Conversion frame size buffer cant be bigger than 4092 bytes
if(adc_handle[adc_unit].conversion_frame_size > 4092){
log_e("Buffers are too big. Please set lower conversions per pin.");
return false;
}
//Initialize continuous handle and pins
err = __analogContinuousInit(channel, sizeof(channel) / sizeof(adc_channel_t), adc_unit, sampling_freq_hz);
if(err != ESP_OK){
log_e("Analog initialization failed!");
return false;
}
//Setup callbacks for complete event
adc_continuous_evt_cbs_t cbs = {
.on_conv_done = adcFnWrapper,
//.on_pool_ovf can be used in future
};
adc_handle[adc_unit].adc_interrupt_handle.fn = (voidFuncPtr)userFunc;
err = adc_continuous_register_event_callbacks(adc_handle[adc_unit].adc_continuous_handle, &cbs, &adc_handle[adc_unit].adc_interrupt_handle);
if(err != ESP_OK){
log_e("adc_continuous_register_event_callbacks failed!");
return false;
}
//Allocate and prepare result structure for adc readings
adc_result = malloc(pins_count * sizeof(adc_continuos_data_t));
for(int k = 0; k < pins_count; k++){
adc_result[k].pin = pins[k];
adc_result[k].channel = channel[k];
}
//Initialize ADC calibration handle
if(adc_handle[adc_unit].adc_cali_handle == NULL){
log_d("Creating cali handle for ADC_%d", adc_unit);
#if ADC_CALI_SCHEME_CURVE_FITTING_SUPPORTED
adc_cali_curve_fitting_config_t cali_config = {
.unit_id = adc_unit,
.atten = __adcContinuousAtten,
.bitwidth = __adcContinuousWidth,
};
err = adc_cali_create_scheme_curve_fitting(&cali_config, &adc_handle[adc_unit].adc_cali_handle);
#elif !defined(CONFIG_IDF_TARGET_ESP32H2) //ADC_CALI_SCHEME_LINE_FITTING_SUPPORTED
adc_cali_line_fitting_config_t cali_config = {
.unit_id = adc_unit,
.bitwidth = __adcContinuousWidth,
.atten = __adcContinuousAtten,
};
err = adc_cali_create_scheme_line_fitting(&cali_config, &adc_handle[adc_unit].adc_cali_handle);
#endif
if(err != ESP_OK){
log_e("adc_cali_create_scheme_x failed!");
return false;
}
}
for(int k = 0; k < pins_count; k++){
if(!perimanSetPinBus(pins[k], ESP32_BUS_TYPE_ADC_CONT, (void *)(adc_unit+1))){
log_e("perimanSetPinBus to ADC Continuous failed!");
adcContinuousDetachBus((void *)(adc_unit+1));
return false;
}
}
return true;
}
bool analogContinuousRead(adc_continuos_data_t ** buffer, uint32_t timeout_ms){
if(adc_handle[ADC_UNIT_1].adc_continuous_handle != NULL){
uint32_t bytes_read = 0;
uint32_t read_raw[used_adc_channels];
uint32_t read_count[used_adc_channels];
uint8_t adc_read[adc_handle[ADC_UNIT_1].conversion_frame_size];
memset(adc_read, 0xcc, sizeof(adc_read));
memset(read_raw, 0, sizeof(read_raw));
memset(read_count, 0, sizeof(read_count));
esp_err_t err = adc_continuous_read(adc_handle[ADC_UNIT_1].adc_continuous_handle, adc_read, adc_handle[0].conversion_frame_size, &bytes_read, timeout_ms);
if(err != ESP_OK){
if(err == ESP_ERR_TIMEOUT){
log_e("Reading data failed: No data, increase timeout");
}
else {
log_e("Reading data failed with error: %X", err);
}
*buffer = NULL;
return false;
}
for (int i = 0; i < bytes_read; i += SOC_ADC_DIGI_RESULT_BYTES) {
adc_digi_output_data_t *p = (adc_digi_output_data_t*)&adc_read[i];
uint32_t chan_num = ADC_GET_CHANNEL(p);
uint32_t data = ADC_GET_DATA(p);
/* Check the channel number validation, the data is invalid if the channel num exceed the maximum channel */
if(chan_num >= SOC_ADC_CHANNEL_NUM(0)){
log_e("Invalid data [%d_%d]", chan_num, data);
*buffer = NULL;
return false;
}
if(data >= (1 << SOC_ADC_DIGI_MAX_BITWIDTH))
{
data = 0;
log_e("Invalid data");
}
for(int j = 0; j < used_adc_channels; j++){
if(adc_result[j].channel == chan_num){
read_raw[j] += data;
read_count[j] += 1;
break;
}
}
}
for (int j = 0; j < used_adc_channels; j++){
if (read_count[j] != 0){
adc_result[j].avg_read_raw = read_raw[j] / read_count[j];
adc_cali_raw_to_voltage(adc_handle[ADC_UNIT_1].adc_cali_handle, adc_result[j].avg_read_raw, &adc_result[j].avg_read_mvolts);
}
else {
log_w("No data read for pin %d", adc_result[j].pin);
}
}
*buffer = adc_result;
return true;
}
else {
log_e("ADC Continuous is not initialized!");
return false;
}
}
bool analogContinuousStart(){
if(adc_handle[ADC_UNIT_1].adc_continuous_handle != NULL){
if(adc_continuous_start(adc_handle[ADC_UNIT_1].adc_continuous_handle) == ESP_OK){
return true;
}
} else {
log_e("ADC Continuous is not initialized!");
}
return false;
}
bool analogContinuousStop(){
if(adc_handle[ADC_UNIT_1].adc_continuous_handle != NULL){
if(adc_continuous_stop(adc_handle[ADC_UNIT_1].adc_continuous_handle) == ESP_OK){
return true;
}
} else {
log_e("ADC Continuous is not initialized!");
}
return false;
}
bool analogContinuousDeinit(){
if(adc_handle[ADC_UNIT_1].adc_continuous_handle != NULL){
esp_err_t err = adc_continuous_deinit(adc_handle[ADC_UNIT_1].adc_continuous_handle);
if (err != ESP_OK){
return false;
}
free(adc_result);
adc_handle[ADC_UNIT_1].adc_continuous_handle = NULL;
} else {
log_i("ADC Continuous was not initialized");
}
return true;
}
void analogContinuousSetAtten(adc_attenuation_t attenuation){
__adcContinuousAtten = attenuation;
}
void analogContinuousSetWidth(uint8_t bits){
if ((bits < SOC_ADC_DIGI_MIN_BITWIDTH) && (bits > SOC_ADC_DIGI_MAX_BITWIDTH)){
log_e("Selected width cannot be set. Range is from %d to %d", SOC_ADC_DIGI_MIN_BITWIDTH, SOC_ADC_DIGI_MAX_BITWIDTH);
return;
}
__adcContinuousWidth = bits;
}
#endif #endif
...@@ -77,6 +77,56 @@ void analogSetWidth(uint8_t bits); ...@@ -77,6 +77,56 @@ void analogSetWidth(uint8_t bits);
#endif #endif
/*
* Analog Continuous mode
* */
typedef struct {
uint8_t pin; /*!<ADC pin */
uint8_t channel; /*!<ADC channel */
int avg_read_raw; /*!<ADC average raw data */
int avg_read_mvolts; /*!<ADC average voltage in mV */
} adc_continuos_data_t;
/*
* Setup ADC continuous peripheral
* */
bool analogContinuous(uint8_t pins[], size_t pins_count, uint32_t conversions_per_pin, uint32_t sampling_freq_hz, void (*userFunc)(void));
/*
* Read ADC continuous conversion data
* */
bool analogContinuousRead(adc_continuos_data_t ** buffer, uint32_t timeout_ms);
/*
* Start ADC continuous conversions
* */
bool analogContinuousStart();
/*
* Stop ADC continuous conversions
* */
bool analogContinuousStop();
/*
* Deinitialize ADC continuous peripheral
* */
bool analogContinuousDeinit();
/*
* Sets the attenuation for continuous mode reading
* Default is 11db
* */
void analogContinuousSetAtten(adc_attenuation_t attenuation);
/*
* Sets the read resolution for continuous mode
* Default is 12bit (0 - 4095)
* Range is 9 - 12
* */
void analogContinuousSetWidth(uint8_t bits);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif
......
...@@ -11,13 +11,17 @@ to a digital form so that it can be read and processed by a microcontroller. ...@@ -11,13 +11,17 @@ to a digital form so that it can be read and processed by a microcontroller.
ADCs are very useful in control and monitoring applications since most sensors ADCs are very useful in control and monitoring applications since most sensors
(e.g., temperature, pressure, force) produce analogue output voltages. (e.g., temperature, pressure, force) produce analogue output voltages.
.. note:: Each SoC or module has a different number of ADC's with a different number of channels and pins availible. Refer to datasheet of each board for more info. .. note:: Each SoC or module has a different number of ADC's with a different number of channels and pins available. Refer to datasheet of each board for more info.
Arduino-ESP32 ADC API Arduino-ESP32 ADC API
--------------------- ---------------------
ADC common API ADC OneShot mode
************** ****************
The ADC OneShot mode API is fully compatible with Arduino's ``analogRead`` function.
When you call the ``analogRead`` or ``analogReadMillivolts`` function, it returns the result of a single conversion on the requested pin.
analogRead analogRead
^^^^^^^^^^ ^^^^^^^^^^
...@@ -82,7 +86,7 @@ The measurable input voltage differs for each chip, see table below for detailed ...@@ -82,7 +86,7 @@ The measurable input voltage differs for each chip, see table below for detailed
``ADC_ATTEN_DB_0`` 100 mV ~ 950 mV ``ADC_ATTEN_DB_0`` 100 mV ~ 950 mV
``ADC_ATTEN_DB_2_5`` 100 mV ~ 1250 mV ``ADC_ATTEN_DB_2_5`` 100 mV ~ 1250 mV
``ADC_ATTEN_DB_6`` 150 mV ~ 1750 mV ``ADC_ATTEN_DB_6`` 150 mV ~ 1750 mV
``ADC_ATTEN_DB_11`` 150 mV ~ 2450 mV ``ADC_ATTEN_DB_11`` 150 mV ~ 3100 mV
===================== =========================================== ===================== ===========================================
.. tab:: ESP32-S2 .. tab:: ESP32-S2
...@@ -135,13 +139,12 @@ This function is used to set the attenuation for a specific pin/ADC channel. For ...@@ -135,13 +139,12 @@ This function is used to set the attenuation for a specific pin/ADC channel. For
* ``pin`` selects specific pin for attenuation settings. * ``pin`` selects specific pin for attenuation settings.
* ``attenuation`` sets the attenuation. * ``attenuation`` sets the attenuation.
ADC API specific for ESP32 chip
*******************************
analogSetWidth analogSetWidth
^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^
.. note:: This function is only available for ESP32 chip.
This function is used to set the hardware sample bits and read resolution. This function is used to set the hardware sample bits and read resolution.
Default is 12bit (0 - 4095). Default is 12bit (0 - 4095).
Range is 9 - 12. Range is 9 - 12.
...@@ -149,13 +152,130 @@ Range is 9 - 12. ...@@ -149,13 +152,130 @@ Range is 9 - 12.
.. code-block:: arduino .. code-block:: arduino
void analogSetWidth(uint8_t bits); void analogSetWidth(uint8_t bits);
ADC Continuous mode
*******************
ADC Continuous mode is an API designed for performing analog conversions on multiple pins in the background,
with the feature of receiving a callback upon completion of these conversions to access the results.
This API allows you to specify the desired number of conversions per pin within a single cycle, along with its corresponding sampling rate.
The outcome of the ``analogContinuousRead`` function is an array of ``adc_continuous_data_t`` structures.
These structures hold both the raw average value and the average value in millivolts for each pin.
analogContinuous
^^^^^^^^^^^^^^^^
This function is used to configure ADC continuous peripheral on selected pins.
.. code-block:: arduino
bool analogContinuous(uint8_t pins[], size_t pins_count, uint32_t conversions_per_pin, uint32_t sampling_freq_hz, void (*userFunc)(void));
* ``pins[]`` array of pins to be set up
* ``pins_count`` count of pins in array
* ``conversions_per_pin`` sets how many conversions per pin will run each ADC cycle
* ``sampling_freq_hz`` sets sampling frequency of ADC in Hz
* ``userFunc`` sets callback function to be called after adc conversion is done (can be set to ``NULL``)
This function will return ``true`` if configuration is successful.
If ``false`` is returned, error occurs and ADC continuous was not configured.
analogContinuousRead
^^^^^^^^^^^^^^^^^^^^
This function is used to read ADC continuous data to the result buffer. The result buffer is an array of ``adc_continuos_data_t``.
.. code-block:: arduino
typedef struct {
uint8_t pin; /*!<ADC pin */
uint8_t channel; /*!<ADC channel */
int avg_read_raw; /*!<ADC average raw data */
int avg_read_mvolts; /*!<ADC average voltage in mV */
} adc_continuos_data_t;
.. code-block:: arduino
bool analogContinuousRead(adc_continuos_data_t ** buffer, uint32_t timeout_ms);
* ``buffer`` conversion result buffer to read from ADC in adc_continuos_data_t format.
* ``timeout_ms`` time to wait for data in milliseconds.
This function will return ``true`` if reading is successful and ``buffer`` is filled with data.
If ``false`` is returned, reading has failed and ``buffer`` is set to NULL.
analogContinuousStart
^^^^^^^^^^^^^^^^^^^^^
This function is used to start ADC continuous conversions.
.. code-block:: arduino
bool analogContinuousStart();
This function will return ``true`` if ADC continuous is succesfully started.
If ``false`` is returned, starting ADC continuous has failed.
analogContinuousStop
^^^^^^^^^^^^^^^^^^^^
This function is used to stop ADC continuous conversions.
.. code-block:: arduino
bool analogContinuousStop();
This function will return ``true`` if ADC continuous is succesfully stopped.
If ``false`` is returned, stopping ADC continuous has failed.
analogContinuousDeinit
^^^^^^^^^^^^^^^^^^^^^^
This function is used to deinitialize ADC continuous peripheral.
.. code-block:: arduino
bool analogContinuousDeinit();
This function will return ``true`` if ADC continuous is succesfully deinitialized.
If ``false`` is returned, deinitilization of ADC continuous has failed.
analogContinuousSetAtten
^^^^^^^^^^^^^^^^^^^^^^^^
This function is used to set the attenuation for ADC continuous peripheral. For more informations refer to `analogSetAttenuation`_.
.. code-block:: arduino
void analogContinuousSetAtten(adc_attenuation_t attenuation);
* ``attenuation`` sets the attenuation (default is 11db).
analogContinuousSetWidth
^^^^^^^^^^^^^^^^^^^^^^^^
This function is used to set the hardware resolution bits.
Default value for all chips is 12bit (0 - 4095).
.. note:: This function will take effect only for ESP32 chip, as it allows to set resolution in range 9-12 bits.
.. code-block:: arduino
void analogContinuousSetWidth(uint8_t bits);
* ``bits`` sets resolution bits.
Example Applications Example Applications
******************** ********************
Here is an example of how to use the ADC. Here is an example of how to use the ADC in OneShot mode or you can run Arduino example 01.Basics -> AnalogReadSerial.
.. literalinclude:: ../../../libraries/ESP32/examples/AnalogRead/AnalogRead.ino .. literalinclude:: ../../../libraries/ESP32/examples/AnalogRead/AnalogRead.ino
:language: arduino :language: arduino
Or you can run Arduino example 01.Basics -> AnalogReadSerial. Here is an example of how to use the ADC in Continuous mode.
.. literalinclude:: ../../../libraries/ESP32/examples/AnalogReadContinuous/AnalogReadContinuous.ino
:language: arduino
// Define how many conversion per pin will happen and reading the data will be and average of all conversions
#define CONVERSIONS_PER_PIN 5
// Declare array of ADC pins that will be used for ADC Continuous mode - ONLY ADC1 pins are supported
// Number of selected pins can be from 1 to ALL ADC1 pins.
#ifdef CONFIG_IDF_TARGET_ESP32
uint8_t adc_pins[] = {36, 39, 34, 35}; //some of ADC1 pins for ESP32
#else
uint8_t adc_pins[] = {1, 2, 3, 4}; //ADC1 common pins for ESP32S2/S3 + ESP32C3/C6 + ESP32H2
#endif
// Calculate how many pins are declared in the array - needed as input for the setup function of ADC Continuous
uint8_t adc_pins_count = sizeof(adc_pins) / sizeof(uint8_t);
// Flag which will be set in ISR when conversion is done
volatile bool adc_coversion_done = false;
// Result structure for ADC Continuous reading
adc_continuos_data_t * result = NULL;
// ISR Function that will be triggered when ADC conversion is done
void ARDUINO_ISR_ATTR adcComplete() {
adc_coversion_done = true;
}
void setup() {
// Initialize serial communication at 115200 bits per second:
Serial.begin(115200);
// Optional for ESP32: Set the resolution to 9-12 bits (default is 12 bits)
analogContinuousSetWidth(12);
// Optional: Set different attenaution (default is ADC_11db)
analogContinuousSetAtten(ADC_11db);
// Setup ADC Continuous with following input:
// array of pins, count of the pins, how many conversions per pin in one cycle will happen, sampling frequency, callback function
analogContinuous(adc_pins, adc_pins_count, CONVERSIONS_PER_PIN, 20000, &adcComplete);
// Start ADC Continuous conversions
analogContinuousStart();
}
void loop() {
// Check if conversion is done and try to read data
if (adc_coversion_done == true) {
// Set ISR flag back to false
adc_coversion_done = false;
// Read data from ADC
if (analogContinuousRead(&result, 0)) {
// Optional: Stop ADC Continuous conversions to have more time to process (print) the data
analogContinuousStop();
for (int i = 0; i < adc_pins_count; i++) {
Serial.printf("\nADC PIN %d data:", result[i].pin);
Serial.printf("\n Avg raw value = %d", result[i].avg_read_raw);
Serial.printf("\n Avg milivolts value = %d", result[i].avg_read_mvolts);
}
// Delay for better readability of ADC data
delay(1000);
// Optional: If ADC was stopped, start ADC conversions and wait for callback function to set adc_coversion_done flag to true
analogContinuousStart();
}
else {
Serial.println("Error occured during reading data. Set Core Debug Level to error or lower for more informations.");
}
}
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment