Commit cfb4689c authored by Bodmer's avatar Bodmer

Patch for ESP32 C3 - may or may not work!

I do NOT have and ESP32 C3 to test with!
parent 416a84e5
////////////////////////////////////////////////////
// TFT_eSPI driver functions for ESP32 processors //
////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////
// Global variables
////////////////////////////////////////////////////////////////////////////////////////
// Select the SPI port to use, ESP32 has 2 options
#if !defined (TFT_PARALLEL_8_BIT)
#ifdef CONFIG_IDF_TARGET_ESP32
#ifdef USE_HSPI_PORT
SPIClass spi = SPIClass(HSPI);
#elif defined(USE_FSPI_PORT)
SPIClass spi = SPIClass(FSPI);
#else // use default VSPI port
SPIClass spi = SPIClass(VSPI);
#endif
#else
#ifdef USE_HSPI_PORT
SPIClass spi = SPIClass(HSPI);
#elif defined(USE_FSPI_PORT)
SPIClass spi = SPIClass(FSPI);
#else // use FSPI port
SPIClass& spi = SPI;
#endif
#endif
#endif
#ifdef ESP32_DMA
// DMA SPA handle
spi_device_handle_t dmaHAL;
#ifdef CONFIG_IDF_TARGET_ESP32
#define DMA_CHANNEL 1
#ifdef USE_HSPI_PORT
spi_host_device_t spi_host = HSPI_HOST;
#elif defined(USE_FSPI_PORT)
spi_host_device_t spi_host = SPI_HOST;
#else // use VSPI port
spi_host_device_t spi_host = VSPI_HOST;
#endif
#else
#ifdef USE_HSPI_PORT
#define DMA_CHANNEL 2
spi_host_device_t spi_host = (spi_host_device_t) DMA_CHANNEL; // Draws once then freezes
#else // use FSPI port
#define DMA_CHANNEL 1
spi_host_device_t spi_host = (spi_host_device_t) DMA_CHANNEL; // Draws once then freezes
#endif
#endif
#endif
#if !defined (TFT_PARALLEL_8_BIT)
// Volatile for register reads:
volatile uint32_t* _spi_cmd = (volatile uint32_t*)(SPI_CMD_REG(SPI_PORT));
volatile uint32_t* _spi_user = (volatile uint32_t*)(SPI_USER_REG(SPI_PORT));
// Register writes only:
volatile uint32_t* _spi_mosi_dlen = (volatile uint32_t*)(SPI_MOSI_DLEN_REG(SPI_PORT));
volatile uint32_t* _spi_w = (volatile uint32_t*)(SPI_W0_REG(SPI_PORT));
#endif
////////////////////////////////////////////////////////////////////////////////////////
#if defined (TFT_SDA_READ) && !defined (TFT_PARALLEL_8_BIT)
////////////////////////////////////////////////////////////////////////////////////////
/***************************************************************************************
** Function name: beginSDA
** Description: Detach SPI from pin to permit software SPI
***************************************************************************************/
void TFT_eSPI::begin_SDA_Read(void)
{
pinMatrixOutDetach(TFT_MOSI, false, false);
pinMode(TFT_MOSI, INPUT);
pinMatrixInAttach(TFT_MOSI, VSPIQ_IN_IDX, false);
SET_BUS_READ_MODE;
}
/***************************************************************************************
** Function name: endSDA
** Description: Attach SPI pins after software SPI
***************************************************************************************/
void TFT_eSPI::end_SDA_Read(void)
{
pinMode(TFT_MOSI, OUTPUT);
pinMatrixOutAttach(TFT_MOSI, VSPID_OUT_IDX, false, false);
pinMode(TFT_MISO, INPUT);
pinMatrixInAttach(TFT_MISO, VSPIQ_IN_IDX, false);
SET_BUS_WRITE_MODE;
}
////////////////////////////////////////////////////////////////////////////////////////
#endif // #if defined (TFT_SDA_READ)
////////////////////////////////////////////////////////////////////////////////////////
/***************************************************************************************
** Function name: read byte - supports class functions
** Description: Read a byte from ESP32 8 bit data port
***************************************************************************************/
// Parallel bus MUST be set to input before calling this function!
uint8_t TFT_eSPI::readByte(void)
{
uint8_t b = 0xAA;
#if defined (TFT_PARALLEL_8_BIT)
RD_L;
uint32_t reg; // Read all GPIO pins 0-31
reg = gpio_input_get(); // Read three times to allow for bus access time
reg = gpio_input_get();
reg = gpio_input_get(); // Data should be stable now
RD_H;
// Check GPIO bits used and build value
b = (((reg>>TFT_D0)&1) << 0);
b |= (((reg>>TFT_D1)&1) << 1);
b |= (((reg>>TFT_D2)&1) << 2);
b |= (((reg>>TFT_D3)&1) << 3);
b |= (((reg>>TFT_D4)&1) << 4);
b |= (((reg>>TFT_D5)&1) << 5);
b |= (((reg>>TFT_D6)&1) << 6);
b |= (((reg>>TFT_D7)&1) << 7);
#endif
return b;
}
////////////////////////////////////////////////////////////////////////////////////////
#ifdef TFT_PARALLEL_8_BIT
////////////////////////////////////////////////////////////////////////////////////////
/***************************************************************************************
** Function name: GPIO direction control - supports class functions
** Description: Set parallel bus to INPUT or OUTPUT
***************************************************************************************/
void TFT_eSPI::busDir(uint32_t mask, uint8_t mode)
{
// Arduino generic native function
pinMode(TFT_D0, mode);
pinMode(TFT_D1, mode);
pinMode(TFT_D2, mode);
pinMode(TFT_D3, mode);
pinMode(TFT_D4, mode);
pinMode(TFT_D5, mode);
pinMode(TFT_D6, mode);
pinMode(TFT_D7, mode);
return;
}
/***************************************************************************************
** Function name: GPIO direction control - supports class functions
** Description: Set ESP32 GPIO pin to input or output (set high) ASAP
***************************************************************************************/
void TFT_eSPI::gpioMode(uint8_t gpio, uint8_t mode)
{
pinMode(gpio, mode);
digitalWrite(gpio, HIGH);
}
////////////////////////////////////////////////////////////////////////////////////////
#endif // #ifdef TFT_PARALLEL_8_BIT
////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////
#if defined (RPI_WRITE_STROBE) && !defined (TFT_PARALLEL_8_BIT) // Code for RPi TFT
////////////////////////////////////////////////////////////////////////////////////////
/***************************************************************************************
** Function name: pushBlock - for ESP32 or ESP8266 RPi TFT
** Description: Write a block of pixels of the same colour
***************************************************************************************/
void TFT_eSPI::pushBlock(uint16_t color, uint32_t len)
{
uint8_t colorBin[] = { (uint8_t) (color >> 8), (uint8_t) color };
if(len) spi.writePattern(&colorBin[0], 2, 1); len--;
while(len--) {WR_L; WR_H;}
}
/***************************************************************************************
** Function name: pushPixels - for ESP32 or ESP8266 RPi TFT
** Description: Write a sequence of pixels
***************************************************************************************/
void TFT_eSPI::pushPixels(const void* data_in, uint32_t len)
{
uint8_t *data = (uint8_t*)data_in;
if(_swapBytes) {
while ( len-- ) {tft_Write_16(*data); data++;}
return;
}
while ( len >=64 ) {spi.writePattern(data, 64, 1); data += 64; len -= 64; }
if (len) spi.writePattern(data, len, 1);
}
////////////////////////////////////////////////////////////////////////////////////////
#elif !defined (SPI_18BIT_DRIVER) && !defined (TFT_PARALLEL_8_BIT) // Most SPI displays
////////////////////////////////////////////////////////////////////////////////////////
/***************************************************************************************
** Function name: pushBlock - for ESP32
** Description: Write a block of pixels of the same colour
***************************************************************************************/
/*
void TFT_eSPI::pushBlock(uint16_t color, uint32_t len){
uint32_t color32 = (color<<8 | color >>8)<<16 | (color<<8 | color >>8);
bool empty = true;
volatile uint32_t* spi_w = (volatile uint32_t*)_spi_w;
if (len > 31)
{
*_spi_mosi_dlen = 511;
spi_w[0] = color32;
spi_w[1] = color32;
spi_w[2] = color32;
spi_w[3] = color32;
spi_w[4] = color32;
spi_w[5] = color32;
spi_w[6] = color32;
spi_w[7] = color32;
spi_w[8] = color32;
spi_w[9] = color32;
spi_w[10] = color32;
spi_w[11] = color32;
spi_w[12] = color32;
spi_w[13] = color32;
spi_w[14] = color32;
spi_w[15] = color32;
while(len>31)
{
while ((*_spi_cmd)&SPI_USR);
*_spi_cmd = SPI_USR;
len -= 32;
}
empty = false;
}
if (len)
{
if(empty) {
for (uint32_t i=0; i <= len; i+=2) *spi_w++ = color32;
}
len = (len << 4) - 1;
while (*_spi_cmd&SPI_USR);
*_spi_mosi_dlen = len;
*_spi_cmd = SPI_USR;
}
while ((*_spi_cmd)&SPI_USR); // Move to later in code to use transmit time usefully?
}
//*/
//*
void TFT_eSPI::pushBlock(uint16_t color, uint32_t len){
volatile uint32_t* spi_w = _spi_w;
uint32_t color32 = (color<<8 | color >>8)<<16 | (color<<8 | color >>8);
uint32_t i = 0;
uint32_t rem = len & 0x1F;
len = len - rem;
// Start with partial buffer pixels
if (rem)
{
while (*_spi_cmd&SPI_USR);
for (i=0; i < rem; i+=2) *spi_w++ = color32;
*_spi_mosi_dlen = (rem << 4) - 1;
#if CONFIG_IDF_TARGET_ESP32C3
*_spi_cmd = SPI_UPDATE;
while (*_spi_cmd & SPI_UPDATE);
#endif
*_spi_cmd = SPI_USR;
if (!len) return; //{while (*_spi_cmd&SPI_USR); return; }
i = i>>1; while(i++<16) *spi_w++ = color32;
}
while (*_spi_cmd&SPI_USR);
if (!rem) while (i++<16) *spi_w++ = color32;
*_spi_mosi_dlen = 511;
// End with full buffer to maximise useful time for downstream code
while(len)
{
while (*_spi_cmd&SPI_USR);
#if CONFIG_IDF_TARGET_ESP32C3
*_spi_cmd = SPI_UPDATE;
while (*_spi_cmd & SPI_UPDATE);
#endif
*_spi_cmd = SPI_USR;
len -= 32;
}
// Do not wait here
//while (*_spi_cmd&SPI_USR);
}
//*/
/***************************************************************************************
** Function name: pushSwapBytePixels - for ESP32
** Description: Write a sequence of pixels with swapped bytes
***************************************************************************************/
void TFT_eSPI::pushSwapBytePixels(const void* data_in, uint32_t len){
uint8_t* data = (uint8_t*)data_in;
uint32_t color[16];
if (len > 31)
{
WRITE_PERI_REG(SPI_MOSI_DLEN_REG(SPI_PORT), 511);
while(len>31)
{
uint32_t i = 0;
while(i<16)
{
color[i++] = DAT8TO32(data);
data+=4;
}
while (READ_PERI_REG(SPI_CMD_REG(SPI_PORT))&SPI_USR);
WRITE_PERI_REG(SPI_W0_REG(SPI_PORT), color[0]);
WRITE_PERI_REG(SPI_W1_REG(SPI_PORT), color[1]);
WRITE_PERI_REG(SPI_W2_REG(SPI_PORT), color[2]);
WRITE_PERI_REG(SPI_W3_REG(SPI_PORT), color[3]);
WRITE_PERI_REG(SPI_W4_REG(SPI_PORT), color[4]);
WRITE_PERI_REG(SPI_W5_REG(SPI_PORT), color[5]);
WRITE_PERI_REG(SPI_W6_REG(SPI_PORT), color[6]);
WRITE_PERI_REG(SPI_W7_REG(SPI_PORT), color[7]);
WRITE_PERI_REG(SPI_W8_REG(SPI_PORT), color[8]);
WRITE_PERI_REG(SPI_W9_REG(SPI_PORT), color[9]);
WRITE_PERI_REG(SPI_W10_REG(SPI_PORT), color[10]);
WRITE_PERI_REG(SPI_W11_REG(SPI_PORT), color[11]);
WRITE_PERI_REG(SPI_W12_REG(SPI_PORT), color[12]);
WRITE_PERI_REG(SPI_W13_REG(SPI_PORT), color[13]);
WRITE_PERI_REG(SPI_W14_REG(SPI_PORT), color[14]);
WRITE_PERI_REG(SPI_W15_REG(SPI_PORT), color[15]);
#if CONFIG_IDF_TARGET_ESP32C3
SET_PERI_REG_MASK(SPI_CMD_REG(SPI_PORT), SPI_UPDATE);
while (READ_PERI_REG(SPI_CMD_REG(SPI_PORT))&SPI_UPDATE);
#endif
SET_PERI_REG_MASK(SPI_CMD_REG(SPI_PORT), SPI_USR);
len -= 32;
}
}
if (len > 15)
{
uint32_t i = 0;
while(i<8)
{
color[i++] = DAT8TO32(data);
data+=4;
}
while (READ_PERI_REG(SPI_CMD_REG(SPI_PORT))&SPI_USR);
WRITE_PERI_REG(SPI_MOSI_DLEN_REG(SPI_PORT), 255);
WRITE_PERI_REG(SPI_W0_REG(SPI_PORT), color[0]);
WRITE_PERI_REG(SPI_W1_REG(SPI_PORT), color[1]);
WRITE_PERI_REG(SPI_W2_REG(SPI_PORT), color[2]);
WRITE_PERI_REG(SPI_W3_REG(SPI_PORT), color[3]);
WRITE_PERI_REG(SPI_W4_REG(SPI_PORT), color[4]);
WRITE_PERI_REG(SPI_W5_REG(SPI_PORT), color[5]);
WRITE_PERI_REG(SPI_W6_REG(SPI_PORT), color[6]);
WRITE_PERI_REG(SPI_W7_REG(SPI_PORT), color[7]);
#if CONFIG_IDF_TARGET_ESP32C3
SET_PERI_REG_MASK(SPI_CMD_REG(SPI_PORT), SPI_UPDATE);
while (READ_PERI_REG(SPI_CMD_REG(SPI_PORT))&SPI_UPDATE);
#endif
SET_PERI_REG_MASK(SPI_CMD_REG(SPI_PORT), SPI_USR);
len -= 16;
}
if (len)
{
while (READ_PERI_REG(SPI_CMD_REG(SPI_PORT))&SPI_USR);
WRITE_PERI_REG(SPI_MOSI_DLEN_REG(SPI_PORT), (len << 4) - 1);
for (uint32_t i=0; i <= (len<<1); i+=4) {
WRITE_PERI_REG(SPI_W0_REG(SPI_PORT)+i, DAT8TO32(data)); data+=4;
}
#if CONFIG_IDF_TARGET_ESP32C3
SET_PERI_REG_MASK(SPI_CMD_REG(SPI_PORT), SPI_UPDATE);
while (READ_PERI_REG(SPI_CMD_REG(SPI_PORT))&SPI_UPDATE);
#endif
SET_PERI_REG_MASK(SPI_CMD_REG(SPI_PORT), SPI_USR);
}
while (READ_PERI_REG(SPI_CMD_REG(SPI_PORT))&SPI_USR);
}
/***************************************************************************************
** Function name: pushPixels - for ESP32
** Description: Write a sequence of pixels
***************************************************************************************/
void TFT_eSPI::pushPixels(const void* data_in, uint32_t len){
if(_swapBytes) {
pushSwapBytePixels(data_in, len);
return;
}
uint32_t *data = (uint32_t*)data_in;
if (len > 31)
{
WRITE_PERI_REG(SPI_MOSI_DLEN_REG(SPI_PORT), 511);
while(len>31)
{
while (READ_PERI_REG(SPI_CMD_REG(SPI_PORT))&SPI_USR);
WRITE_PERI_REG(SPI_W0_REG(SPI_PORT), *data++);
WRITE_PERI_REG(SPI_W1_REG(SPI_PORT), *data++);
WRITE_PERI_REG(SPI_W2_REG(SPI_PORT), *data++);
WRITE_PERI_REG(SPI_W3_REG(SPI_PORT), *data++);
WRITE_PERI_REG(SPI_W4_REG(SPI_PORT), *data++);
WRITE_PERI_REG(SPI_W5_REG(SPI_PORT), *data++);
WRITE_PERI_REG(SPI_W6_REG(SPI_PORT), *data++);
WRITE_PERI_REG(SPI_W7_REG(SPI_PORT), *data++);
WRITE_PERI_REG(SPI_W8_REG(SPI_PORT), *data++);
WRITE_PERI_REG(SPI_W9_REG(SPI_PORT), *data++);
WRITE_PERI_REG(SPI_W10_REG(SPI_PORT), *data++);
WRITE_PERI_REG(SPI_W11_REG(SPI_PORT), *data++);
WRITE_PERI_REG(SPI_W12_REG(SPI_PORT), *data++);
WRITE_PERI_REG(SPI_W13_REG(SPI_PORT), *data++);
WRITE_PERI_REG(SPI_W14_REG(SPI_PORT), *data++);
WRITE_PERI_REG(SPI_W15_REG(SPI_PORT), *data++);
#if CONFIG_IDF_TARGET_ESP32C3
SET_PERI_REG_MASK(SPI_CMD_REG(SPI_PORT), SPI_UPDATE);
while (READ_PERI_REG(SPI_CMD_REG(SPI_PORT))&SPI_UPDATE);
#endif
SET_PERI_REG_MASK(SPI_CMD_REG(SPI_PORT), SPI_USR);
len -= 32;
}
}
if (len)
{
while (READ_PERI_REG(SPI_CMD_REG(SPI_PORT))&SPI_USR);
WRITE_PERI_REG(SPI_MOSI_DLEN_REG(SPI_PORT), (len << 4) - 1);
for (uint32_t i=0; i <= (len<<1); i+=4) WRITE_PERI_REG((SPI_W0_REG(SPI_PORT) + i), *data++);
#if CONFIG_IDF_TARGET_ESP32C3
SET_PERI_REG_MASK(SPI_CMD_REG(SPI_PORT), SPI_UPDATE);
while (READ_PERI_REG(SPI_CMD_REG(SPI_PORT))&SPI_UPDATE);
#endif
SET_PERI_REG_MASK(SPI_CMD_REG(SPI_PORT), SPI_USR);
}
while (READ_PERI_REG(SPI_CMD_REG(SPI_PORT))&SPI_USR);
}
////////////////////////////////////////////////////////////////////////////////////////
#elif defined (SPI_18BIT_DRIVER) // SPI 18 bit colour
////////////////////////////////////////////////////////////////////////////////////////
/***************************************************************************************
** Function name: pushBlock - for ESP32 and 3 byte RGB display
** Description: Write a block of pixels of the same colour
***************************************************************************************/
void TFT_eSPI::pushBlock(uint16_t color, uint32_t len)
{
// Split out the colours
uint32_t r = (color & 0xF800)>>8;
uint32_t g = (color & 0x07E0)<<5;
uint32_t b = (color & 0x001F)<<19;
// Concatenate 4 pixels into three 32 bit blocks
uint32_t r0 = r<<24 | b | g | r;
uint32_t r1 = r0>>8 | g<<16;
uint32_t r2 = r1>>8 | b<<8;
if (len > 19)
{
WRITE_PERI_REG(SPI_MOSI_DLEN_REG(SPI_PORT), 479);
while(len>19)
{
while (READ_PERI_REG(SPI_CMD_REG(SPI_PORT))&SPI_USR);
WRITE_PERI_REG(SPI_W0_REG(SPI_PORT), r0);
WRITE_PERI_REG(SPI_W1_REG(SPI_PORT), r1);
WRITE_PERI_REG(SPI_W2_REG(SPI_PORT), r2);
WRITE_PERI_REG(SPI_W3_REG(SPI_PORT), r0);
WRITE_PERI_REG(SPI_W4_REG(SPI_PORT), r1);
WRITE_PERI_REG(SPI_W5_REG(SPI_PORT), r2);
WRITE_PERI_REG(SPI_W6_REG(SPI_PORT), r0);
WRITE_PERI_REG(SPI_W7_REG(SPI_PORT), r1);
WRITE_PERI_REG(SPI_W8_REG(SPI_PORT), r2);
WRITE_PERI_REG(SPI_W9_REG(SPI_PORT), r0);
WRITE_PERI_REG(SPI_W10_REG(SPI_PORT), r1);
WRITE_PERI_REG(SPI_W11_REG(SPI_PORT), r2);
WRITE_PERI_REG(SPI_W12_REG(SPI_PORT), r0);
WRITE_PERI_REG(SPI_W13_REG(SPI_PORT), r1);
WRITE_PERI_REG(SPI_W14_REG(SPI_PORT), r2);
#if CONFIG_IDF_TARGET_ESP32C3
SET_PERI_REG_MASK(SPI_CMD_REG(SPI_PORT), SPI_UPDATE);
while (READ_PERI_REG(SPI_CMD_REG(SPI_PORT))&SPI_UPDATE);
#endif
SET_PERI_REG_MASK(SPI_CMD_REG(SPI_PORT), SPI_USR);
len -= 20;
}
while (READ_PERI_REG(SPI_CMD_REG(SPI_PORT))&SPI_USR);
}
if (len)
{
WRITE_PERI_REG(SPI_MOSI_DLEN_REG(SPI_PORT), (len * 24) - 1);
WRITE_PERI_REG(SPI_W0_REG(SPI_PORT), r0);
WRITE_PERI_REG(SPI_W1_REG(SPI_PORT), r1);
WRITE_PERI_REG(SPI_W2_REG(SPI_PORT), r2);
WRITE_PERI_REG(SPI_W3_REG(SPI_PORT), r0);
WRITE_PERI_REG(SPI_W4_REG(SPI_PORT), r1);
WRITE_PERI_REG(SPI_W5_REG(SPI_PORT), r2);
if (len > 8 )
{
WRITE_PERI_REG(SPI_W6_REG(SPI_PORT), r0);
WRITE_PERI_REG(SPI_W7_REG(SPI_PORT), r1);
WRITE_PERI_REG(SPI_W8_REG(SPI_PORT), r2);
WRITE_PERI_REG(SPI_W9_REG(SPI_PORT), r0);
WRITE_PERI_REG(SPI_W10_REG(SPI_PORT), r1);
WRITE_PERI_REG(SPI_W11_REG(SPI_PORT), r2);
WRITE_PERI_REG(SPI_W12_REG(SPI_PORT), r0);
WRITE_PERI_REG(SPI_W13_REG(SPI_PORT), r1);
WRITE_PERI_REG(SPI_W14_REG(SPI_PORT), r2);
}
#if CONFIG_IDF_TARGET_ESP32C3
SET_PERI_REG_MASK(SPI_CMD_REG(SPI_PORT), SPI_UPDATE);
while (READ_PERI_REG(SPI_CMD_REG(SPI_PORT))&SPI_UPDATE);
#endif
SET_PERI_REG_MASK(SPI_CMD_REG(SPI_PORT), SPI_USR);
while (READ_PERI_REG(SPI_CMD_REG(SPI_PORT))&SPI_USR);
}
}
/***************************************************************************************
** Function name: pushPixels - for ESP32 and 3 byte RGB display
** Description: Write a sequence of pixels
***************************************************************************************/
void TFT_eSPI::pushPixels(const void* data_in, uint32_t len){
uint16_t *data = (uint16_t*)data_in;
// ILI9488 write macro is not endianess dependant, hence !_swapBytes
if(!_swapBytes) { while ( len-- ) {tft_Write_16S(*data); data++;} }
else { while ( len-- ) {tft_Write_16(*data); data++;} }
}
/***************************************************************************************
** Function name: pushSwapBytePixels - for ESP32 and 3 byte RGB display
** Description: Write a sequence of pixels with swapped bytes
***************************************************************************************/
void TFT_eSPI::pushSwapBytePixels(const void* data_in, uint32_t len){
uint16_t *data = (uint16_t*)data_in;
// ILI9488 write macro is not endianess dependant, so swap byte macro not used here
while ( len-- ) {tft_Write_16(*data); data++;}
}
////////////////////////////////////////////////////////////////////////////////////////
#elif defined (TFT_PARALLEL_8_BIT) // Now the code for ESP32 8 bit parallel
////////////////////////////////////////////////////////////////////////////////////////
/***************************************************************************************
** Function name: pushBlock - for ESP32 and parallel display
** Description: Write a block of pixels of the same colour
***************************************************************************************/
void TFT_eSPI::pushBlock(uint16_t color, uint32_t len){
if ( (color >> 8) == (color & 0x00FF) )
{ if (!len) return;
tft_Write_16(color);
#if defined (SSD1963_DRIVER)
while (--len) {WR_L; WR_H; WR_L; WR_H; WR_L; WR_H;}
#else
#ifdef PSEUDO_16_BIT
while (--len) {WR_L; WR_H;}
#else
while (--len) {WR_L; WR_H; WR_L; WR_H;}
#endif
#endif
}
else while (len--) {tft_Write_16(color);}
}
/***************************************************************************************
** Function name: pushSwapBytePixels - for ESP32 and parallel display
** Description: Write a sequence of pixels with swapped bytes
***************************************************************************************/
void TFT_eSPI::pushSwapBytePixels(const void* data_in, uint32_t len){
uint16_t *data = (uint16_t*)data_in;
while ( len-- ) {tft_Write_16(*data); data++;}
}
/***************************************************************************************
** Function name: pushPixels - for ESP32 and parallel display
** Description: Write a sequence of pixels
***************************************************************************************/
void TFT_eSPI::pushPixels(const void* data_in, uint32_t len){
uint16_t *data = (uint16_t*)data_in;
if(_swapBytes) { while ( len-- ) {tft_Write_16(*data); data++; } }
else { while ( len-- ) {tft_Write_16S(*data); data++;} }
}
////////////////////////////////////////////////////////////////////////////////////////
#endif // End of display interface specific functions
////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////
#if defined (ESP32_DMA) && !defined (TFT_PARALLEL_8_BIT) // DMA FUNCTIONS
////////////////////////////////////////////////////////////////////////////////////////
/***************************************************************************************
** Function name: dmaBusy
** Description: Check if DMA is busy
***************************************************************************************/
bool TFT_eSPI::dmaBusy(void)
{
if (!DMA_Enabled || !spiBusyCheck) return false;
spi_transaction_t *rtrans;
esp_err_t ret;
uint8_t checks = spiBusyCheck;
for (int i = 0; i < checks; ++i)
{
ret = spi_device_get_trans_result(dmaHAL, &rtrans, 0);
if (ret == ESP_OK) spiBusyCheck--;
}
//Serial.print("spiBusyCheck=");Serial.println(spiBusyCheck);
if (spiBusyCheck ==0) return false;
return true;
}
/***************************************************************************************
** Function name: dmaWait
** Description: Wait until DMA is over (blocking!)
***************************************************************************************/
void TFT_eSPI::dmaWait(void)
{
if (!DMA_Enabled || !spiBusyCheck) return;
spi_transaction_t *rtrans;
esp_err_t ret;
for (int i = 0; i < spiBusyCheck; ++i)
{
ret = spi_device_get_trans_result(dmaHAL, &rtrans, portMAX_DELAY);
assert(ret == ESP_OK);
}
spiBusyCheck = 0;
}
/***************************************************************************************
** Function name: pushPixelsDMA
** Description: Push pixels to TFT (len must be less than 32767)
***************************************************************************************/
// This will byte swap the original image if setSwapBytes(true) was called by sketch.
void TFT_eSPI::pushPixelsDMA(uint16_t* image, uint32_t len)
{
if ((len == 0) || (!DMA_Enabled)) return;
dmaWait();
if(_swapBytes) {
for (uint32_t i = 0; i < len; i++) (image[i] = image[i] << 8 | image[i] >> 8);
}
esp_err_t ret;
static spi_transaction_t trans;
memset(&trans, 0, sizeof(spi_transaction_t));
trans.user = (void *)1;
trans.tx_buffer = image; //finally send the line data
trans.length = len * 16; //Data length, in bits
trans.flags = 0; //SPI_TRANS_USE_TXDATA flag
ret = spi_device_queue_trans(dmaHAL, &trans, portMAX_DELAY);
assert(ret == ESP_OK);
spiBusyCheck++;
}
/***************************************************************************************
** Function name: pushImageDMA
** Description: Push image to a window (w*h must be less than 65536)
***************************************************************************************/
// Fixed const data assumed, will NOT clip or swap bytes
void TFT_eSPI::pushImageDMA(int32_t x, int32_t y, int32_t w, int32_t h, uint16_t const* image)
{
if ((w == 0) || (h == 0) || (!DMA_Enabled)) return;
uint32_t len = w*h;
dmaWait();
setAddrWindow(x, y, w, h);
esp_err_t ret;
static spi_transaction_t trans;
memset(&trans, 0, sizeof(spi_transaction_t));
trans.user = (void *)1;
trans.tx_buffer = image; //Data pointer
trans.length = len * 16; //Data length, in bits
trans.flags = 0; //SPI_TRANS_USE_TXDATA flag
ret = spi_device_queue_trans(dmaHAL, &trans, portMAX_DELAY);
assert(ret == ESP_OK);
spiBusyCheck++;
}
/***************************************************************************************
** Function name: pushImageDMA
** Description: Push image to a window (w*h must be less than 65536)
***************************************************************************************/
// This will clip and also swap bytes if setSwapBytes(true) was called by sketch
void TFT_eSPI::pushImageDMA(int32_t x, int32_t y, int32_t w, int32_t h, uint16_t* image, uint16_t* buffer)
{
if ((x >= _vpW) || (y >= _vpH) || (!DMA_Enabled)) return;
int32_t dx = 0;
int32_t dy = 0;
int32_t dw = w;
int32_t dh = h;
if (x < _vpX) { dx = _vpX - x; dw -= dx; x = _vpX; }
if (y < _vpY) { dy = _vpY - y; dh -= dy; y = _vpY; }
if ((x + dw) > _vpW ) dw = _vpW - x;
if ((y + dh) > _vpH ) dh = _vpH - y;
if (dw < 1 || dh < 1) return;
uint32_t len = dw*dh;
if (buffer == nullptr) {
buffer = image;
dmaWait();
}
// If image is clipped, copy pixels into a contiguous block
if ( (dw != w) || (dh != h) ) {
if(_swapBytes) {
for (int32_t yb = 0; yb < dh; yb++) {
for (int32_t xb = 0; xb < dw; xb++) {
uint32_t src = xb + dx + w * (yb + dy);
(buffer[xb + yb * dw] = image[src] << 8 | image[src] >> 8);
}
}
}
else {
for (int32_t yb = 0; yb < dh; yb++) {
memcpy((uint8_t*) (buffer + yb * dw), (uint8_t*) (image + dx + w * (yb + dy)), dw << 1);
}
}
}
// else, if a buffer pointer has been provided copy whole image to the buffer
else if (buffer != image || _swapBytes) {
if(_swapBytes) {
for (uint32_t i = 0; i < len; i++) (buffer[i] = image[i] << 8 | image[i] >> 8);
}
else {
memcpy(buffer, image, len*2);
}
}
if (spiBusyCheck) dmaWait(); // In case we did not wait earlier
setAddrWindow(x, y, dw, dh);
esp_err_t ret;
static spi_transaction_t trans;
memset(&trans, 0, sizeof(spi_transaction_t));
trans.user = (void *)1;
trans.tx_buffer = buffer; //finally send the line data
trans.length = len * 16; //Data length, in bits
trans.flags = 0; //SPI_TRANS_USE_TXDATA flag
ret = spi_device_queue_trans(dmaHAL, &trans, portMAX_DELAY);
assert(ret == ESP_OK);
spiBusyCheck++;
}
////////////////////////////////////////////////////////////////////////////////////////
// Processor specific DMA initialisation
////////////////////////////////////////////////////////////////////////////////////////
// The DMA functions here work with SPI only (not parallel)
/***************************************************************************************
** Function name: dc_callback
** Description: Toggles DC line during transaction
***************************************************************************************/
extern "C" void dc_callback();
void IRAM_ATTR dc_callback(spi_transaction_t *spi_tx)
{
if ((bool)spi_tx->user) {DC_D;}
else {DC_C;}
}
/***************************************************************************************
** Function name: initDMA
** Description: Initialise the DMA engine - returns true if init OK
***************************************************************************************/
bool TFT_eSPI::initDMA(bool ctrl_cs)
{
if (DMA_Enabled) return false;
esp_err_t ret;
spi_bus_config_t buscfg = {
.mosi_io_num = TFT_MOSI,
.miso_io_num = TFT_MISO,
.sclk_io_num = TFT_SCLK,
.quadwp_io_num = -1,
.quadhd_io_num = -1,
.max_transfer_sz = TFT_WIDTH * TFT_HEIGHT * 2 + 8, // TFT screen size
.flags = 0,
.intr_flags = 0
};
int8_t pin = -1;
if (ctrl_cs) pin = TFT_CS;
spi_device_interface_config_t devcfg = {
.command_bits = 0,
.address_bits = 0,
.dummy_bits = 0,
.mode = TFT_SPI_MODE,
.duty_cycle_pos = 0,
.cs_ena_pretrans = 0,
.cs_ena_posttrans = 0,
.clock_speed_hz = SPI_FREQUENCY,
.input_delay_ns = 0,
.spics_io_num = pin,
.flags = SPI_DEVICE_NO_DUMMY, //0,
.queue_size = 1,
.pre_cb = 0, //dc_callback, //Callback to handle D/C line
.post_cb = 0
};
ret = spi_bus_initialize(spi_host, &buscfg, DMA_CHANNEL);
ESP_ERROR_CHECK(ret);
ret = spi_bus_add_device(spi_host, &devcfg, &dmaHAL);
ESP_ERROR_CHECK(ret);
DMA_Enabled = true;
spiBusyCheck = 0;
return true;
}
/***************************************************************************************
** Function name: deInitDMA
** Description: Disconnect the DMA engine from SPI
***************************************************************************************/
void TFT_eSPI::deInitDMA(void)
{
if (!DMA_Enabled) return;
spi_bus_remove_device(dmaHAL);
spi_bus_free(spi_host);
DMA_Enabled = false;
}
////////////////////////////////////////////////////////////////////////////////////////
#endif // End of DMA FUNCTIONS
////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////
// TFT_eSPI driver functions for ESP32 processors //
////////////////////////////////////////////////////
#ifndef _TFT_eSPI_ESP32H_
#define _TFT_eSPI_ESP32H_
// Processor ID reported by getSetup()
#define PROCESSOR_ID 0x32
// Include processor specific header
#include "soc/spi_reg.h"
#include "driver/spi_master.h"
#if !defined(CONFIG_IDF_TARGET_ESP32C3) && !defined(CONFIG_IDF_TARGET_ESP32S2) && !defined(CONFIG_IDF_TARGET_ESP32)
#define CONFIG_IDF_TARGET_ESP32
#endif
#ifndef VSPI
#define VSPI FSPI
#endif
// Fix IDF problems with ESP32C3
#if CONFIG_IDF_TARGET_ESP32C3
// Fix ESP32C3 IDF bug for missing definition (VSPI/FSPI only tested at the moment)
#ifndef REG_SPI_BASE
//Will this work as per S3? #define REG_SPI_BASE(i) (((i)>1) ? (DR_REG_SPI3_BASE) : (DR_REG_SPI2_BASE))
#define REG_SPI_BASE(i) (DR_REG_SPI1_BASE + (((i)>1) ? (((i)* 0x1000) + 0x20000) : (((~(i)) & 1)* 0x1000 )))
#endif
// Fix ESP32C3 IDF bug for name change
#ifndef SPI_MOSI_DLEN_REG
#define SPI_MOSI_DLEN_REG(x) SPI_MS_DLEN_REG(x)
#endif
#endif
// SUPPORT_TRANSACTIONS is mandatory for ESP32 so the hal mutex is toggled
#if !defined (SUPPORT_TRANSACTIONS)
#define SUPPORT_TRANSACTIONS
#endif
/*
ESP32:
FSPI not defined
HSPI = 2, uses SPI2
VSPI = 3, uses SPI3
ESP32-S2:
FSPI = 1, uses SPI2
HSPI = 2, uses SPI3
VSPI not defined
ESP32 C3:
FSPI = 0, uses SPI2 ???? To be checked
HSPI = 1, uses SPI3 ???? To be checked
VSPI not defined
For ESP32/S2/C3:
SPI1_HOST = 0
SPI2_HOST = 1
SPI3_HOST = 2
*/
// ESP32 specific SPI port selection
#ifdef USE_HSPI_PORT
#ifdef CONFIG_IDF_TARGET_ESP32
#define SPI_PORT HSPI //HSPI is port 2 on ESP32
#else
#define SPI_PORT 3 //HSPI is port 3 on ESP32 S2
#endif
#elif defined(USE_FSPI_PORT)
#define SPI_PORT 2 //FSPI(ESP32 S2)
#else
#ifdef CONFIG_IDF_TARGET_ESP32
#define SPI_PORT VSPI
#elif CONFIG_IDF_TARGET_ESP32S2
#define SPI_PORT 2 //FSPI(ESP32 S2)
#elif CONFIG_IDF_TARGET_ESP32C3
#define SPI_PORT FSPI
#endif
#endif
#ifdef RPI_DISPLAY_TYPE
#define CMD_BITS (16-1)
#else
#define CMD_BITS (8-1)
#endif
// Initialise processor specific SPI functions, used by init()
#define INIT_TFT_DATA_BUS // Not used
// Define a generic flag for 8 bit parallel
#if defined (ESP32_PARALLEL) // Specific to ESP32 for backwards compatibility
#if !defined (TFT_PARALLEL_8_BIT)
#define TFT_PARALLEL_8_BIT // Generic parallel flag
#endif
#endif
// Ensure ESP32 specific flag is defined for 8 bit parallel
#if defined (TFT_PARALLEL_8_BIT)
#if !defined (ESP32_PARALLEL)
#define ESP32_PARALLEL
#endif
#endif
// Processor specific code used by SPI bus transaction startWrite and endWrite functions
#if !defined (ESP32_PARALLEL)
#if (TFT_SPI_MODE == SPI_MODE1) || (TFT_SPI_MODE == SPI_MODE2)
#define SET_BUS_WRITE_MODE *_spi_user = SPI_USR_MOSI | SPI_CK_OUT_EDGE
#define SET_BUS_READ_MODE *_spi_user = SPI_USR_MOSI | SPI_USR_MISO | SPI_DOUTDIN | SPI_CK_OUT_EDGE
#else
#define SET_BUS_WRITE_MODE *_spi_user = SPI_USR_MOSI
#define SET_BUS_READ_MODE *_spi_user = SPI_USR_MOSI | SPI_USR_MISO | SPI_DOUTDIN
#endif
#else
// Not applicable to parallel bus
#define SET_BUS_WRITE_MODE
#define SET_BUS_READ_MODE
#endif
// Code to check if DMA is busy, used by SPI bus transaction transaction and endWrite functions
#if !defined(TFT_PARALLEL_8_BIT) && !defined(SPI_18BIT_DRIVER)
#define ESP32_DMA
// Code to check if DMA is busy, used by SPI DMA + transaction + endWrite functions
#define DMA_BUSY_CHECK dmaWait()
#else
#define DMA_BUSY_CHECK
#endif
#if defined(TFT_PARALLEL_8_BIT)
#define SPI_BUSY_CHECK
#else
#define SPI_BUSY_CHECK while (*_spi_cmd&SPI_USR)
#endif
// If smooth font is used then it is likely SPIFFS will be needed
#ifdef SMOOTH_FONT
// Call up the SPIFFS (SPI FLASH Filing System) for the anti-aliased fonts
#define FS_NO_GLOBALS
#include <FS.h>
#include "SPIFFS.h" // ESP32 only
#define FONT_FS_AVAILABLE
#endif
////////////////////////////////////////////////////////////////////////////////////////
// Define the DC (TFT Data/Command or Register Select (RS))pin drive code
////////////////////////////////////////////////////////////////////////////////////////
#ifndef TFT_DC
#define DC_C // No macro allocated so it generates no code
#define DC_D // No macro allocated so it generates no code
#else
#if defined (TFT_PARALLEL_8_BIT)
// TFT_DC, by design, must be in range 0-31 for single register parallel write
#if (TFT_DC >= 0) && (TFT_DC < 32)
#define DC_C GPIO.out_w1tc.val = (1 << TFT_DC)
#define DC_D GPIO.out_w1ts.val = (1 << TFT_DC)
#else
#define DC_C
#define DC_D
#endif
#else
#if (TFT_DC >= 32)
#ifdef RPI_DISPLAY_TYPE // RPi displays need a slower DC change
#define DC_C GPIO.out_w1ts.val = (1 << (TFT_DC - 32)); \
GPIO.out_w1tc.val = (1 << (TFT_DC - 32))
#define DC_D GPIO.out_w1tc.val = (1 << (TFT_DC - 32)); \
GPIO.out_w1ts.val = (1 << (TFT_DC - 32))
#else
#define DC_C GPIO.out_w1tc.val = (1 << (TFT_DC - 32))//;GPIO.out_w1tc.val = (1 << (TFT_DC - 32))
#define DC_D GPIO.out_w1ts.val = (1 << (TFT_DC - 32))//;GPIO.out_w1ts.val = (1 << (TFT_DC - 32))
#endif
#elif (TFT_DC >= 0)
#if defined (RPI_DISPLAY_TYPE)
#if defined (ILI9486_DRIVER)
// RPi ILI9486 display needs a slower DC change
#define DC_C GPIO.out_w1tc.val = (1 << TFT_DC); \
GPIO.out_w1tc.val = (1 << TFT_DC)
#define DC_D GPIO.out_w1tc.val = (1 << TFT_DC); \
GPIO.out_w1ts.val = (1 << TFT_DC)
#else
// Other RPi displays need a slower C->D change
#define DC_C GPIO.out_w1tc.val = (1 << TFT_DC)
#define DC_D GPIO.out_w1tc.val = (1 << TFT_DC); \
GPIO.out_w1ts.val = (1 << TFT_DC)
#endif
#else
#define DC_C GPIO.out_w1tc.val = (1 << TFT_DC)//;GPIO.out_w1tc.val = (1 << TFT_DC)
#define DC_D GPIO.out_w1ts.val = (1 << TFT_DC)//;GPIO.out_w1ts.val = (1 << TFT_DC)
#endif
#else
#define DC_C
#define DC_D
#endif
#endif
#endif
////////////////////////////////////////////////////////////////////////////////////////
// Define the CS (TFT chip select) pin drive code
////////////////////////////////////////////////////////////////////////////////////////
#ifndef TFT_CS
#define TFT_CS -1 // Keep DMA code happy
#define CS_L // No macro allocated so it generates no code
#define CS_H // No macro allocated so it generates no code
#else
#if defined (TFT_PARALLEL_8_BIT)
#if TFT_CS >= 32
#define CS_L GPIO.out_w1tc.val = (1 << (TFT_CS - 32))
#define CS_H GPIO.out_w1ts.val = (1 << (TFT_CS - 32))
#elif TFT_CS >= 0
#define CS_L GPIO.out_w1tc.val = (1 << TFT_CS)
#define CS_H GPIO.out_w1ts.val = (1 << TFT_CS)
#else
#define CS_L
#define CS_H
#endif
#else
#if (TFT_CS >= 32)
#ifdef RPI_DISPLAY_TYPE // RPi display needs a slower CS change
#define CS_L GPIO.out_w1ts.val = (1 << (TFT_CS - 32)); \
GPIO.out_w1tc.val = (1 << (TFT_CS - 32))
#define CS_H GPIO.out_w1tc.val = (1 << (TFT_CS - 32)); \
GPIO.out_w1ts.val = (1 << (TFT_CS - 32))
#else
#define CS_L GPIO.out_w1tc.val = (1 << (TFT_CS - 32)); GPIO.out_w1tc.val = (1 << (TFT_CS - 32))
#define CS_H GPIO.out_w1ts.val = (1 << (TFT_CS - 32))//;GPIO.out_w1ts.val = (1 << (TFT_CS - 32))
#endif
#elif (TFT_CS >= 0)
#ifdef RPI_DISPLAY_TYPE // RPi display needs a slower CS change
#define CS_L GPIO.out_w1ts.val = (1 << TFT_CS); GPIO.out_w1tc.val = (1 << TFT_CS)
#define CS_H GPIO.out_w1tc.val = (1 << TFT_CS); GPIO.out_w1ts.val = (1 << TFT_CS)
#else
#define CS_L GPIO.out_w1tc.val = (1 << TFT_CS); GPIO.out_w1tc.val = (1 << TFT_CS)
#define CS_H GPIO.out_w1ts.val = (1 << TFT_CS)//;GPIO.out_w1ts.val = (1 << TFT_CS)
#endif
#else
#define CS_L
#define CS_H
#endif
#endif
#endif
////////////////////////////////////////////////////////////////////////////////////////
// Define the WR (TFT Write) pin drive code
////////////////////////////////////////////////////////////////////////////////////////
#if defined (TFT_WR)
#if (TFT_WR >= 32)
// Note: it will be ~1.25x faster if the TFT_WR pin uses a GPIO pin lower than 32
#define WR_L GPIO.out_w1tc.val = (1 << (TFT_WR - 32))
#define WR_H GPIO.out_w1ts.val = (1 << (TFT_WR - 32))
#elif (TFT_WR >= 0)
// TFT_WR, for best performance, should be in range 0-31 for single register parallel write
#define WR_L GPIO.out_w1tc.val = (1 << TFT_WR)
#define WR_H GPIO.out_w1ts.val = (1 << TFT_WR)
#else
#define WR_L
#define WR_H
#endif
#else
#define WR_L
#define WR_H
#endif
////////////////////////////////////////////////////////////////////////////////////////
// Define the touch screen chip select pin drive code
////////////////////////////////////////////////////////////////////////////////////////
#ifndef TOUCH_CS
#define T_CS_L // No macro allocated so it generates no code
#define T_CS_H // No macro allocated so it generates no code
#else // XPT2046 is slow, so use slower digitalWrite here
#define T_CS_L digitalWrite(TOUCH_CS, LOW)
#define T_CS_H digitalWrite(TOUCH_CS, HIGH)
#endif
////////////////////////////////////////////////////////////////////////////////////////
// Make sure SPI default pins are assigned if not specified by user or set to -1
////////////////////////////////////////////////////////////////////////////////////////
#if !defined (TFT_PARALLEL_8_BIT)
#ifdef USE_HSPI_PORT
#ifndef TFT_MISO
#define TFT_MISO -1
#endif
#ifndef TFT_MOSI
#define TFT_MOSI 13
#endif
#if (TFT_MOSI == -1)
#undef TFT_MOSI
#define TFT_MOSI 13
#endif
#ifndef TFT_SCLK
#define TFT_SCLK 14
#endif
#if (TFT_SCLK == -1)
#undef TFT_SCLK
#define TFT_SCLK 14
#endif
#else // VSPI port
#ifndef TFT_MISO
#define TFT_MISO -1
#endif
#ifndef TFT_MOSI
#define TFT_MOSI 23
#endif
#if (TFT_MOSI == -1)
#undef TFT_MOSI
#define TFT_MOSI 23
#endif
#ifndef TFT_SCLK
#define TFT_SCLK 18
#endif
#if (TFT_SCLK == -1)
#undef TFT_SCLK
#define TFT_SCLK 18
#endif
#if defined(CONFIG_IDF_TARGET_ESP32C3) || defined(CONFIG_IDF_TARGET_ESP32S2)
#if (TFT_MISO == -1)
#undef TFT_MISO
#define TFT_MISO TFT_MOSI
#endif
#endif
#endif
#endif
////////////////////////////////////////////////////////////////////////////////////////
// Define the parallel bus interface chip pin drive code
////////////////////////////////////////////////////////////////////////////////////////
#if defined (TFT_PARALLEL_8_BIT)
// Create a bit set lookup table for data bus - wastes 1kbyte of RAM but speeds things up dramatically
// can then use e.g. GPIO.out_w1ts.val = set_mask(0xFF); to set data bus to 0xFF
#define PARALLEL_INIT_TFT_DATA_BUS \
for (int32_t c = 0; c<256; c++) \
{ \
xset_mask[c] = 0; \
if ( c & 0x01 ) xset_mask[c] |= (1 << TFT_D0); \
if ( c & 0x02 ) xset_mask[c] |= (1 << TFT_D1); \
if ( c & 0x04 ) xset_mask[c] |= (1 << TFT_D2); \
if ( c & 0x08 ) xset_mask[c] |= (1 << TFT_D3); \
if ( c & 0x10 ) xset_mask[c] |= (1 << TFT_D4); \
if ( c & 0x20 ) xset_mask[c] |= (1 << TFT_D5); \
if ( c & 0x40 ) xset_mask[c] |= (1 << TFT_D6); \
if ( c & 0x80 ) xset_mask[c] |= (1 << TFT_D7); \
} \
// Mask for the 8 data bits to set pin directions
#define dir_mask ((1 << TFT_D0) | (1 << TFT_D1) | (1 << TFT_D2) | (1 << TFT_D3) | (1 << TFT_D4) | (1 << TFT_D5) | (1 << TFT_D6) | (1 << TFT_D7))
#if (TFT_WR >= 32)
// Data bits and the write line are cleared sequentially
#define clr_mask (dir_mask); WR_L
#elif (TFT_WR >= 0)
// Data bits and the write line are cleared to 0 in one step (1.25x faster)
#define clr_mask (dir_mask | (1 << TFT_WR))
#else
#define clr_mask
#endif
// A lookup table is used to set the different bit patterns, this uses 1kByte of RAM
#define set_mask(C) xset_mask[C] // 63fps Sprite rendering test 33% faster, graphicstest only 1.8% faster than shifting in real time
// Real-time shifting alternative to above to save 1KByte RAM, 47 fps Sprite rendering test
/*#define set_mask(C) (((C)&0x80)>>7)<<TFT_D7 | (((C)&0x40)>>6)<<TFT_D6 | (((C)&0x20)>>5)<<TFT_D5 | (((C)&0x10)>>4)<<TFT_D4 | \
(((C)&0x08)>>3)<<TFT_D3 | (((C)&0x04)>>2)<<TFT_D2 | (((C)&0x02)>>1)<<TFT_D1 | (((C)&0x01)>>0)<<TFT_D0
//*/
// Write 8 bits to TFT
#define tft_Write_8(C) GPIO.out_w1tc.val = clr_mask; GPIO.out_w1ts.val = set_mask((uint8_t)(C)); WR_H
#if defined (SSD1963_DRIVER)
// Write 18 bit color to TFT
#define tft_Write_16(C) GPIO.out_w1tc.val = clr_mask; GPIO.out_w1ts.val = set_mask((uint8_t) (((C) & 0xF800)>> 8)); WR_H; \
GPIO.out_w1tc.val = clr_mask; GPIO.out_w1ts.val = set_mask((uint8_t) (((C) & 0x07E0)>> 3)); WR_H; \
GPIO.out_w1tc.val = clr_mask; GPIO.out_w1ts.val = set_mask((uint8_t) (((C) & 0x001F)<< 3)); WR_H
// 18 bit color write with swapped bytes
#define tft_Write_16S(C) Cswap = ((C) >>8 | (C) << 8); tft_Write_16(Cswap)
#else
#ifdef PSEUDO_16_BIT
// One write strobe for both bytes
#define tft_Write_16(C) GPIO.out_w1tc.val = clr_mask; GPIO.out_w1ts.val = set_mask((uint8_t) ((C) >> 0)); WR_H
#define tft_Write_16S(C) GPIO.out_w1tc.val = clr_mask; GPIO.out_w1ts.val = set_mask((uint8_t) ((C) >> 8)); WR_H
#else
// Write 16 bits to TFT
#define tft_Write_16(C) GPIO.out_w1tc.val = clr_mask; GPIO.out_w1ts.val = set_mask((uint8_t) ((C) >> 8)); WR_H; \
GPIO.out_w1tc.val = clr_mask; GPIO.out_w1ts.val = set_mask((uint8_t) ((C) >> 0)); WR_H
// 16 bit write with swapped bytes
#define tft_Write_16S(C) GPIO.out_w1tc.val = clr_mask; GPIO.out_w1ts.val = set_mask((uint8_t) ((C) >> 0)); WR_H; \
GPIO.out_w1tc.val = clr_mask; GPIO.out_w1ts.val = set_mask((uint8_t) ((C) >> 8)); WR_H
#endif
#endif
// Write 32 bits to TFT
#define tft_Write_32(C) GPIO.out_w1tc.val = clr_mask; GPIO.out_w1ts.val = set_mask((uint8_t) ((C) >> 24)); WR_H; \
GPIO.out_w1tc.val = clr_mask; GPIO.out_w1ts.val = set_mask((uint8_t) ((C) >> 16)); WR_H; \
GPIO.out_w1tc.val = clr_mask; GPIO.out_w1ts.val = set_mask((uint8_t) ((C) >> 8)); WR_H; \
GPIO.out_w1tc.val = clr_mask; GPIO.out_w1ts.val = set_mask((uint8_t) ((C) >> 0)); WR_H
// Write two concatenated 16 bit values to TFT
#define tft_Write_32C(C,D) GPIO.out_w1tc.val = clr_mask; GPIO.out_w1ts.val = set_mask((uint8_t) ((C) >> 8)); WR_H; \
GPIO.out_w1tc.val = clr_mask; GPIO.out_w1ts.val = set_mask((uint8_t) ((C) >> 0)); WR_H; \
GPIO.out_w1tc.val = clr_mask; GPIO.out_w1ts.val = set_mask((uint8_t) ((D) >> 8)); WR_H; \
GPIO.out_w1tc.val = clr_mask; GPIO.out_w1ts.val = set_mask((uint8_t) ((D) >> 0)); WR_H
// Write 16 bit value twice to TFT - used by drawPixel()
#define tft_Write_32D(C) GPIO.out_w1tc.val = clr_mask; GPIO.out_w1ts.val = set_mask((uint8_t) ((C) >> 8)); WR_H; \
GPIO.out_w1tc.val = clr_mask; GPIO.out_w1ts.val = set_mask((uint8_t) ((C) >> 0)); WR_H; \
GPIO.out_w1tc.val = clr_mask; GPIO.out_w1ts.val = set_mask((uint8_t) ((C) >> 8)); WR_H; \
GPIO.out_w1tc.val = clr_mask; GPIO.out_w1ts.val = set_mask((uint8_t) ((C) >> 0)); WR_H
// Read pin
#ifdef TFT_RD
#if (TFT_RD >= 32)
#define RD_L GPIO.out_w1tc.val = (1 << (TFT_RD - 32))
#define RD_H GPIO.out_w1ts.val = (1 << (TFT_RD - 32))
#elif (TFT_RD >= 0)
#define RD_L GPIO.out_w1tc.val = (1 << TFT_RD)
//#define RD_L digitalWrite(TFT_WR, LOW)
#define RD_H GPIO.out_w1ts.val = (1 << TFT_RD)
//#define RD_H digitalWrite(TFT_WR, HIGH)
#else
#define RD_L
#define RD_H
#endif
#else
#define TFT_RD -1
#define RD_L
#define RD_H
#endif
////////////////////////////////////////////////////////////////////////////////////////
// Macros to write commands/pixel colour data to a SPI ILI948x TFT
////////////////////////////////////////////////////////////////////////////////////////
#elif defined (SPI_18BIT_DRIVER) // SPI 18 bit colour
// Write 8 bits to TFT
#define tft_Write_8(C) spi.transfer(C)
// Convert 16 bit colour to 18 bit and write in 3 bytes
#define tft_Write_16(C) spi.transfer(((C) & 0xF800)>>8); \
spi.transfer(((C) & 0x07E0)>>3); \
spi.transfer(((C) & 0x001F)<<3)
// Future option for transfer without wait
#define tft_Write_16N(C) tft_Write_16(C)
// Convert swapped byte 16 bit colour to 18 bit and write in 3 bytes
#define tft_Write_16S(C) spi.transfer((C) & 0xF8); \
spi.transfer(((C) & 0xE000)>>11 | ((C) & 0x07)<<5); \
spi.transfer(((C) & 0x1F00)>>5)
// Write 32 bits to TFT
#define tft_Write_32(C) spi.write32(C)
// Write two concatenated 16 bit values to TFT
#define tft_Write_32C(C,D) spi.write32((C)<<16 | (D))
// Write 16 bit value twice to TFT
#define tft_Write_32D(C) spi.write32((C)<<16 | (C))
////////////////////////////////////////////////////////////////////////////////////////
// Macros to write commands/pixel colour data to an Raspberry Pi TFT
////////////////////////////////////////////////////////////////////////////////////////
#elif defined (RPI_DISPLAY_TYPE)
// ESP32 low level SPI writes for 8, 16 and 32 bit values
// to avoid the function call overhead
#define TFT_WRITE_BITS(D, B) \
WRITE_PERI_REG(SPI_MOSI_DLEN_REG(SPI_PORT), B-1); \
WRITE_PERI_REG(SPI_W0_REG(SPI_PORT), D); \
SET_PERI_REG_MASK(SPI_CMD_REG(SPI_PORT), SPI_USR); \
while (READ_PERI_REG(SPI_CMD_REG(SPI_PORT))&SPI_USR);
// Write 8 bits
#define tft_Write_8(C) TFT_WRITE_BITS((C)<<8, 16)
// Write 16 bits with corrected endianness for 16 bit colours
#define tft_Write_16(C) TFT_WRITE_BITS((C)<<8 | (C)>>8, 16)
// Future option for transfer without wait
#define tft_Write_16N(C) tft_Write_16(C)
// Write 16 bits
#define tft_Write_16S(C) TFT_WRITE_BITS(C, 16)
// Write 32 bits
#define tft_Write_32(C) TFT_WRITE_BITS(C, 32)
// Write two address coordinates
#define tft_Write_32C(C,D) TFT_WRITE_BITS((C)<<24 | (C), 32); \
TFT_WRITE_BITS((D)<<24 | (D), 32)
// Write same value twice
#define tft_Write_32D(C) tft_Write_32C(C,C)
////////////////////////////////////////////////////////////////////////////////////////
// Macros for all other SPI displays
////////////////////////////////////////////////////////////////////////////////////////
#else
/* Old macros
// ESP32 low level SPI writes for 8, 16 and 32 bit values
// to avoid the function call overhead
#define TFT_WRITE_BITS(D, B) \
WRITE_PERI_REG(SPI_MOSI_DLEN_REG(SPI_PORT), B-1); \
WRITE_PERI_REG(SPI_W0_REG(SPI_PORT), D); \
SET_PERI_REG_MASK(SPI_CMD_REG(SPI_PORT), SPI_USR); \
while (READ_PERI_REG(SPI_CMD_REG(SPI_PORT))&SPI_USR);
// Write 8 bits
#define tft_Write_8(C) TFT_WRITE_BITS(C, 8)
// Write 16 bits with corrected endianness for 16 bit colours
#define tft_Write_16(C) TFT_WRITE_BITS((C)<<8 | (C)>>8, 16)
// Write 16 bits
#define tft_Write_16S(C) TFT_WRITE_BITS(C, 16)
// Write 32 bits
#define tft_Write_32(C) TFT_WRITE_BITS(C, 32)
// Write two address coordinates
#define tft_Write_32C(C,D) TFT_WRITE_BITS((uint16_t)((D)<<8 | (D)>>8)<<16 | (uint16_t)((C)<<8 | (C)>>8), 32)
// Write same value twice
#define tft_Write_32D(C) TFT_WRITE_BITS((uint16_t)((C)<<8 | (C)>>8)<<16 | (uint16_t)((C)<<8 | (C)>>8), 32)
//*/
//* Replacement slimmer macros
#if !defined(CONFIG_IDF_TARGET_ESP32C3)
#define TFT_WRITE_BITS(D, B) *_spi_mosi_dlen = B-1; \
*_spi_w = D; \
*_spi_cmd = SPI_USR; \
while (*_spi_cmd & SPI_USR);
#else
#define TFT_WRITE_BITS(D, B) *_spi_mosi_dlen = B-1; \
*_spi_w = D; \
*_spi_cmd = SPI_UPDATE; \
while (*_spi_cmd & SPI_UPDATE); \
*_spi_cmd = SPI_USR; \
while (*_spi_cmd & SPI_USR);
#endif
// Write 8 bits
#define tft_Write_8(C) TFT_WRITE_BITS(C, 8)
// Write 16 bits with corrected endianness for 16 bit colours
#define tft_Write_16(C) TFT_WRITE_BITS((C)<<8 | (C)>>8, 16)
// Future option for transfer without wait
#if !defined(CONFIG_IDF_TARGET_ESP32C3)
#define tft_Write_16N(C) *_spi_mosi_dlen = 16-1; \
*_spi_w = ((C)<<8 | (C)>>8); \
*_spi_cmd = SPI_USR;
#else
#define tft_Write_16N(C) *_spi_mosi_dlen = 16-1; \
*_spi_w = ((C)<<8 | (C)>>8); \
*_spi_cmd = SPI_UPDATE; \
while (*_spi_cmd & SPI_UPDATE); \
*_spi_cmd = SPI_USR;
#endif
// Write 16 bits
#define tft_Write_16S(C) TFT_WRITE_BITS(C, 16)
// Write 32 bits
#define tft_Write_32(C) TFT_WRITE_BITS(C, 32)
// Write two address coordinates
#define tft_Write_32C(C,D) TFT_WRITE_BITS((uint16_t)((D)<<8 | (D)>>8)<<16 | (uint16_t)((C)<<8 | (C)>>8), 32)
// Write same value twice
#define tft_Write_32D(C) TFT_WRITE_BITS((uint16_t)((C)<<8 | (C)>>8)<<16 | (uint16_t)((C)<<8 | (C)>>8), 32)
//*/
#endif
#ifndef tft_Write_16N
#define tft_Write_16N tft_Write_16
#endif
////////////////////////////////////////////////////////////////////////////////////////
// Macros to read from display using SPI or software SPI
////////////////////////////////////////////////////////////////////////////////////////
#if !defined (TFT_PARALLEL_8_BIT)
// Read from display using SPI or software SPI
// Use a SPI read transfer
#define tft_Read_8() spi.transfer(0)
#endif
// Concatenate a byte sequence A,B,C,D to CDAB, P is a uint8_t pointer
#define DAT8TO32(P) ( (uint32_t)P[0]<<8 | P[1] | P[2]<<24 | P[3]<<16 )
#endif // Header end
......@@ -19,6 +19,8 @@
#if defined (ESP32)
#if defined(CONFIG_IDF_TARGET_ESP32S3)
#include "Processors/TFT_eSPI_ESP32_S3.c"
#elif defined(CONFIG_IDF_TARGET_ESP32C3)
#include "Processors/TFT_eSPI_ESP32_C3.c"
#else
#include "Processors/TFT_eSPI_ESP32.c"
#endif
......
......@@ -67,6 +67,8 @@
// Include the processor specific drivers
#if defined(CONFIG_IDF_TARGET_ESP32S3)
#include "Processors/TFT_eSPI_ESP32_S3.h"
#elif defined(CONFIG_IDF_TARGET_ESP32C3)
#include "Processors/TFT_eSPI_ESP32_C3.h"
#elif defined (ESP32)
#include "Processors/TFT_eSPI_ESP32.h"
#elif defined (ESP8266)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment