Commit 1fd8ee72 authored by maniacbug's avatar maniacbug

Created new example, copied from starping

parent 4ef1f4b8
# Arduino Makefile
# Arduino adaptation by mellis, eighthave, oli.keller
# Modified by Kerry Wong to support NetBeans
# Modified by Rob Gray (Graynomad) for use with Windows and no IDE
# This works in my environment and I use it to program two different
# 328-based boards and a Mega2560. It's not necessarily robust and
# I may have broken something in the original file that I don't use.
#
# This makefile allows you to build sketches from the command line
# without the Arduino environment.
#
# Instructions for using the makefile:
#
# 1. Copy this file into the folder with your sketch. The project code file
# should have a .c extension however the file gets copied to a .cpp before
# compilation so you still write in C++.
#
# 2. Modify the lines between the double ### rows to set the paths
# comm ports etc for your system. EG. c:/progra~1/arduino/arduino-00
# for the Arduino IDE, Note the use of short folder name, don't use
# "Program files" because spaces will break the build.
#
# Set the line containing "MCU" to match your board's processor.
# Typically ATmega328 or ATmega2560. If you're using a LilyPad Arduino,
# change F_CPU to 8000000.
#
# 3. At the command line, change to the directory containing your
# program's file and the makefile.
#
# 4. Type "make" and press enter to compile/verify your program.
# The default make target will also perform the uplode using avrdude.
#
# The first time this is done all required libraries will be built
# and a core.a file will be created in the output folder.
#
# NOTES:
# All output goes into a folder called "output" underneath the working folder.
# The default all: target creates symbol (.sym) and expanded assembly
# (.lss) files and uploads the program.
#
#
##########################################################
##########################################################
# Select processor here
MCU = atmega328p
#MCU = atmega2560
ifeq ($(MCU),atmega2560)
UPLOAD_RATE = 115200
AVRDUDE_PROTOCOL = stk500v2
COM = 39
endif
ifeq ($(MCU),atmega328p)
UPLOAD_RATE = 57600
AVRDUDE_PROTOCOL = stk500v1
COM = 33
endif
UNAME := $(shell uname)
ifeq ($(UNAME),Darwin)
ARDUINO_VERSION = 21
ARDUINO_DIR = /opt/arduino-00$(ARDUINO_VERSION)
AVR_TOOLS_PATH = $(ARDUINO_DIR)/hardware/tools/avr/bin
AVRDUDECONFIG_PATH = $(ARDUINO_DIR)/hardware/tools/avr/etc
PORT = /dev/tty.usbserial-A600eHIs
PORT2 = /dev/tty.usbserial-A9007LmI
else
ARDUINO_VERSION = 22
ARDUINO_DIR = /opt/arduino-00$(ARDUINO_VERSION)
AVR_TOOLS_PATH = /usr/bin
AVRDUDECONFIG_PATH = $(ARDUINO_DIR)/hardware/tools
PORT = /dev/ttyUSB0
PORT2 = /dev/ttyUSB1
endif
PROJECT_NAME = $(notdir $(PWD))
PROJECT_DIR = .
ARDUINO_CORE = $(ARDUINO_DIR)/hardware/arduino/cores/arduino
ARDUINO_AVR = $(ARDUINO_DIR)/hardware/tools/avr/avr/include/avr
ARDUINO_LIB = $(ARDUINO_DIR)/libraries
F_CPU = 16000000
##########################################################
##########################################################
# Note that if your program has dependencies other than those
# already listed below, you will need to add them accordingly.
C_MODULES = \
$(ARDUINO_CORE)/wiring_pulse.c \
$(ARDUINO_CORE)/wiring_analog.c \
$(ARDUINO_CORE)/pins_arduino.c \
$(ARDUINO_CORE)/wiring.c \
$(ARDUINO_CORE)/wiring_digital.c \
$(ARDUINO_CORE)/WInterrupts.c \
$(ARDUINO_CORE)/wiring_shift.c \
CXX_MODULES = \
$(ARDUINO_CORE)/Tone.cpp \
$(ARDUINO_CORE)/main.cpp \
$(ARDUINO_CORE)/WMath.cpp \
$(ARDUINO_CORE)/Print.cpp \
$(ARDUINO_CORE)/HardwareSerial.cpp \
$(ARDUINO_LIB)/SPI/SPI.cpp \
$(ARDUINO_LIB)/EEPROM/EEPROM.cpp \
../../RF24.cpp
CXX_APP = output/$(PROJECT_NAME).cpp
MODULES = $(C_MODULES) $(CXX_MODULES)
SRC = $(C_MODULES)
CXXSRC = $(CXX_MODULES) $(CXX_APP)
FORMAT = ihex
# Name of this Makefile (used for "make depend").
MAKEFILE = Makefile
# Debugging format.
# Native formats for AVR-GCC's -g are stabs [default], or dwarf-2.
# AVR (extended) COFF requires stabs, plus an avr-objcopy run.
#DEBUG = stabs
DEBUG =
OPT = s
# Place -D or -U options here
CDEFS = -DF_CPU=$(F_CPU)L -DARDUINO=$(ARDUINO_VERSION)
CXXDEFS = -DF_CPU=$(F_CPU)L -DARDUINO=$(ARDUINO_VERSION)
# Place -I options here
CINCS = -I$(ARDUINO_LIB)/EEPROM -I$(ARDUINO_CORE) -I$(ARDUINO_LIB) -I$(PROJECT_DIR) -I$(ARDUINO_AVR) -I$(ARDUINO_LIB)/SPI -I../..
CXXINCS = -I$(ARDUINO_CORE) -I$(ARDUINO_LIB)
# Compiler flag to set the C Standard level.
# c89 - "ANSI" C
# gnu89 - c89 plus GCC extensions
# c99 - ISO C99 standard (not yet fully implemented)
# gnu99 - c99 plus GCC extensions
#CSTANDARD = -std=gnu99
CDEBUG = -g$(DEBUG)
#CWARN = -Wall -Wstrict-prototypes
CWARN = -Wall # show all warnings
#CWARN = -w # suppress all warnings
CMAP = -Wl,-Map,output.map
####CTUNING = -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums
CTUNING = -ffunction-sections -fdata-sections
CXXTUNING = -fno-exceptions -ffunction-sections -fdata-sections
#CEXTRA = -Wa,-adhlns=$(<:.c=.lst)
MMCU = -mmcu=$(MCU)
CFLAGS = $(CDEBUG) -O$(OPT) $(CMAP) $(CWARN) $(CTUNING) $(MMCU) $(CDEFS) $(CINCS) $(CSTANDARD) $(CEXTRA)
CXXFLAGS = $(CDEBUG) -O$(OPT) $(CWARN) $(CXXTUNING) $(CDEFS) $(CINCS)
#ASFLAGS = -Wa,-adhlns=$(<:.S=.lst),-gstabs
LDFLAGS = -O$(OPT) -lm -Wl,--gc-sections
#LDFLAGS = -O$(OPT) -lm -Wl,-Map,output/$(PROJECT_NAME).map
# Programming support using avrdude. Settings and variables.
AVRDUDE_PORT = $(PORT)
AVRDUDE_WRITE_FLASH = -U flash:w:output/$(PROJECT_NAME).hex:i
AVRDUDE_FLAGS = -V -F -D -C $(AVRDUDECONFIG_PATH)/avrdude.conf \
-p $(MCU) -c $(AVRDUDE_PROTOCOL) -b $(UPLOAD_RATE)
# Program settings
CC = $(AVR_TOOLS_PATH)/avr-gcc
CXX = $(AVR_TOOLS_PATH)/avr-g++
LD = $(AVR_TOOLS_PATH)/avr-gcc
OBJCOPY = $(AVR_TOOLS_PATH)/avr-objcopy
OBJDUMP = $(AVR_TOOLS_PATH)/avr-objdump
AR = $(AVR_TOOLS_PATH)/avr-ar
SIZE = $(AVR_TOOLS_PATH)/avr-size
NM = $(AVR_TOOLS_PATH)/avr-nm
AVRDUDE = $(AVR_TOOLS_PATH)/avrdude
REMOVE = rm -f
MV = mv -f
# Define all object files.
OBJ = $(SRC:.c=.o) $(CXXSRC:.cpp=.o) $(ASRC:.S=.o)
OBJ_MODULES = $(C_MODULES:.c=.o) $(CXX_MODULES:.cpp=.o)
# Define all listing files.
LST = $(ASRC:.S=.lst) $(CXXSRC:.cpp=.lst) $(SRC:.c=.lst)
# Combine all necessary flags and optional flags.
# Add target processor to flags.
ALL_CFLAGS = $(CFLAGS) -mmcu=$(MCU)
ALL_CXXFLAGS = $(CXXFLAGS) -mmcu=$(MCU)
ALL_ASFLAGS = -x assembler-with-cpp $(ASFLAGS) -mmcu=$(MCU)
ALL_LDFLAGS = $(LDFLAGS) -mmcu=$(MCU)
# Default target.
# This is th etarget that gets executed with a make command
# that has no parameters, ie "make".
all: applet_files build sym lss size upload
build: elf hex
output/$(PROJECT_NAME).cpp: $(PROJECT_NAME).pde
test -d output || mkdir output
echo "#include <WProgram.h>" > $@
echo "#line 1 \"$<\"" >> $@
cat $< >> $@
elf: output/$(PROJECT_NAME).elf
hex: output/$(PROJECT_NAME).hex
eep: output/$(PROJECT_NAME).eep
lss: output/$(PROJECT_NAME).lss
#sym: output/$(PROJECT_NAME).sym
# Upload HEX file to Arduino
upload: upload1 upload2
upload1: output/$(PROJECT_NAME).hex
$(AVRDUDE) $(AVRDUDE_FLAGS) -P $(PORT) $(AVRDUDE_WRITE_FLASH)
upload2: output/$(PROJECT_NAME).hex
$(AVRDUDE) $(AVRDUDE_FLAGS) -P $(PORT2) $(AVRDUDE_WRITE_FLASH)
sym:
$(NM) -n -C --format=posix output/$(PROJECT_NAME).elf > output/$(PROJECT_NAME).sym
# Display size of file.
size:
$(SIZE) output/$(PROJECT_NAME).elf
# Convert ELF to COFF for use in debugging / simulating in AVR Studio or VMLAB.
COFFCONVERT=$(OBJCOPY) --debugging \
--change-section-address .data-0x800000 \
--change-section-address .bss-0x800000 \
--change-section-address .noinit-0x800000 \
--change-section-address .eeprom-0x810000
coff: output/$(PROJECT_NAME).elf
$(COFFCONVERT) -O coff-avr output/$(PROJECT_NAME).elf $(PROJECT_NAME).cof
extcoff: $(PROJECT_NAME).elf
$(COFFCONVERT) -O coff-ext-avr output/$(PROJECT_NAME).elf $(PROJECT_NAME).cof
.SUFFIXES: .elf .hex .eep .lss .sym
.elf.hex:
$(OBJCOPY) -O $(FORMAT) -R .eeprom $< $@
.elf.eep:
$(OBJCOPY) -O $(FORMAT) -j .eeprom --set-section-flags=.eeprom="alloc,load" \
--no-change-warnings \
--change-section-lma .eeprom=0 $< $@
# Create extended listing file from ELF output file.
.elf.lss:
$(OBJDUMP) -h -S $< > $@
# Link: create ELF output file from library.
#output/$(PROJECT_NAME).elf: $(PROJECT_NAME).c output/core.a
output/$(PROJECT_NAME).elf: output/$(PROJECT_NAME).o output/core.a
$(LD) $(ALL_LDFLAGS) -o $@ output/$(PROJECT_NAME).o output/core.a
output/core.a: $(OBJ_MODULES)
@for i in $(OBJ_MODULES); do echo $(AR) rcs output/core.a $$i; $(AR) rcs output/core.a $$i; done
# Compile: create object files from C++ source files.
.cpp.o:
$(CXX) -c $(ALL_CXXFLAGS) $< -o $@
# Compile: create object files from C source files.
.c.o:
$(CC) -c $(ALL_CFLAGS) $< -o $@
# Compile: create assembler files from C source files.
.c.s:
$(CC) -S $(ALL_CFLAGS) $< -o $@
# Assemble: create object files from assembler source files.
.S.o:
$(CC) -c $(ALL_ASFLAGS) $< -o $@
# Automatic dependencies
%.d: %.c
$(CC) -M $(ALL_CFLAGS) $< | sed "s;$(notdir $*).o:;$*.o $*.d:;" > $@
%.d: %.cpp
$(CXX) -M $(ALL_CXXFLAGS) $< | sed "s;$(notdir $*).o:;$*.o $*.d:;" > $@
# Target: clean project.
clean:
$(REMOVE) output/$(PROJECT_NAME).hex output/$(PROJECT_NAME).eep output/$(PROJECT_NAME).cof output/$(PROJECT_NAME).elf \
output/$(PROJECT_NAME).map output/$(PROJECT_NAME).sym output/$(PROJECT_NAME).lss output/core.a \
$(OBJ) $(LST) $(SRC:.c=.s) $(SRC:.c=.d) $(CXXSRC:.cpp=.s) $(CXXSRC:.cpp=.d)
#.PHONY: all build elf hex eep lss sym program coff extcoff clean applet_files sizebefore sizeafter
.PHONY: all build elf hex eep lss sym program coff extcoff applet_files sizebefore sizeafter
#include $(SRC:.c=.d)
#include $(CXXSRC:.cpp=.d)
/*
Copyright (C) 2011 James Coliz, Jr. <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* @file printf.h
*
* Setup necessary to direct stdout to the Arduino Serial library, which
* enables 'printf'
*/
#ifndef __PRINTF_H__
#define __PRINTF_H__
#include "WProgram.h"
int serial_putc( char c, FILE *t )
{
Serial.write( c );
return c;
}
void printf_begin(void)
{
fdevopen( &serial_putc, 0 );
}
#endif // __PRINTF_H__
/*
Copyright (C) 2011 James Coliz, Jr. <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* Example RF Radio Ping Star Group
*
* This sketch is a more complex example of using the RF24 library for Arduino.
* Deploy this on up to six nodes. Set one as the 'pong receiver' by tying the
* role_pin low, and the others will be 'ping transmit' units. The ping units
* unit will send out the value of millis() once a second. The pong unit will
* respond back with a copy of the value. Each ping unit can get that response
* back, and determine how long the whole cycle took.
*
* This example requires a bit more complexity to determine which unit is which.
* The pong receiver is identified by having its role_pin tied to ground.
* The ping senders are further differentiated by a byte in eeprom.
*/
#include <SPI.h>
#include <EEPROM.h>
#include "nRF24L01.h"
#include "RF24.h"
#include "printf.h"
//
// Hardware configuration
//
// Set up nRF24L01 radio on SPI bus plus pins 8 & 9
RF24 radio(8,9);
// sets the role of this unit in hardware. Connect to GND to be the 'pong' receiver
// Leave open to be the 'pong' receiver.
const int role_pin = 7;
//
// Topology
//
// Radio pipe addresses for the nodes to communicate. Only ping nodes need
// dedicated pipes in this topology. Each ping node has a talking pipe
// that it will ping into, and a listening pipe that it will listen for
// the pong. The pong node listens on all the ping node talking pipes
// and sends the pong back on the sending node's specific listening pipe.
const uint64_t talking_pipes[5] = { 0xF0F0F0F0D2LL, 0xF0F0F0F0C3LL, 0xF0F0F0F0B4LL, 0xF0F0F0F0A5LL, 0xF0F0F0F096LL };
const uint64_t listening_pipes[5] = { 0x3A3A3A3AD2LL, 0x3A3A3A3AC3LL, 0x3A3A3A3AB4LL, 0x3A3A3A3AA5LL, 0x3A3A3A3A96LL };
//
// Role management
//
// Set up role. This sketch uses the same software for all the nodes
// in this system. Doing so greatly simplifies testing. The hardware itself specifies
// which node it is.
//
// This is done through the role_pin
//
// The various roles supported by this sketch
typedef enum { role_invalid = 0, role_ping_out, role_pong_back } role_e;
// The debug-friendly names of those roles
const char* role_friendly_name[] = { "invalid", "Ping out", "Pong back"};
// The role of the current running sketch
role_e role;
//
// Address management
//
// Where in EEPROM is the address stored?
const uint8_t address_at_eeprom_location = 0;
// What is our address (SRAM cache of the address from EEPROM)
// Note that zero is an INVALID address. The pong back unit takes address
// 1, and the rest are 2-6
uint8_t node_address;
void setup(void)
{
//
// Role
//
// set up the role pin
pinMode(role_pin, INPUT);
digitalWrite(role_pin,HIGH);
delay(20); // Just to get a solid reading on the role pin
// read the address pin, establish our role
if ( digitalRead(role_pin) )
role = role_ping_out;
else
role = role_pong_back;
//
// Address
//
if ( role == role_pong_back )
node_address = 1;
else
{
// Read the address from EEPROM
uint8_t reading = EEPROM.read(address_at_eeprom_location);
// If it is in a valid range for node addresses, it is our
// address.
if ( reading >= 2 && reading <= 6 )
node_address = reading;
// Otherwise, it is invalid, so set our address AND ROLE to 'invalid'
else
{
node_address = 0;
role = role_invalid;
}
}
//
// Print preamble
//
Serial.begin(9600);
printf_begin();
printf("\n\rRF24/examples/starping/\n\r");
printf("ROLE: %s\n\r",role_friendly_name[role]);
printf("ADDRESS: %i\n\r",node_address);
//
// Setup and configure rf radio
//
radio.begin();
//
// Open pipes to other nodes for communication
//
// The pong node listens on all the ping node talking pipes
// and sends the pong back on the sending node's specific listening pipe.
if ( role == role_pong_back )
{
radio.openReadingPipe(1,talking_pipes[0]);
radio.openReadingPipe(2,talking_pipes[1]);
radio.openReadingPipe(3,talking_pipes[2]);
radio.openReadingPipe(4,talking_pipes[3]);
radio.openReadingPipe(5,talking_pipes[4]);
}
// Each ping node has a talking pipe that it will ping into, and a listening
// pipe that it will listen for the pong.
if ( role == role_ping_out )
{
// Write on our talking pipe
radio.openWritingPipe(talking_pipes[node_address-2]);
// Listen on our listening pipe
radio.openReadingPipe(1,listening_pipes[node_address-2]);
}
//
// Start listening
//
radio.startListening();
//
// Dump the configuration of the rf unit for debugging
//
radio.printDetails();
//
// Prompt the user to assign a node address if we don't have one
//
if ( role == role_invalid )
{
printf("\n\r*** NO NODE ADDRESS ASSIGNED *** Send 1 through 6 to assign an address\n\r");
}
}
void loop(void)
{
//
// Ping out role. Repeatedly send the current time
//
if (role == role_ping_out)
{
// First, stop listening so we can talk.
radio.stopListening();
// Take the time, and send it. This will block until complete
unsigned long time = millis();
printf("Now sending %lu...",time);
radio.write( &time, sizeof(unsigned long) );
// Now, continue listening
radio.startListening();
// Wait here until we get a response, or timeout (250ms)
unsigned long started_waiting_at = millis();
bool timeout = false;
while ( ! radio.available() && ! timeout )
if (millis() - started_waiting_at > 250 )
timeout = true;
// Describe the results
if ( timeout )
{
printf("Failed, response timed out.\n\r");
}
else
{
// Grab the response, compare, and send to debugging spew
unsigned long got_time;
radio.read( &got_time, sizeof(unsigned long) );
// Spew it
printf("Got response %lu, round-trip delay: %lu\n\r",got_time,millis()-got_time);
}
// Try again 1s later
delay(1000);
}
//
// Pong back role. Receive each packet, dump it out, and send it back
//
if ( role == role_pong_back )
{
// if there is data ready
uint8_t pipe_num;
if ( radio.available(&pipe_num) )
{
// Dump the payloads until we've gotten everything
unsigned long got_time;
boolean done = false;
while (!done)
{
// Fetch the payload, and see if this was the last one.
done = radio.read( &got_time, sizeof(unsigned long) );
// Spew it
printf("Got payload %lu from node %i...",got_time,pipe_num+1);
}
// First, stop listening so we can talk
radio.stopListening();
// Open the correct pipe for writing
radio.openWritingPipe(listening_pipes[pipe_num-1]);
// Retain the low 2 bytes to identify the pipe for the spew
uint16_t pipe_id = listening_pipes[pipe_num-1] & 0xffff;
// Send the final one back.
radio.write( &got_time, sizeof(unsigned long) );
printf("Sent response to %04x.\n\r",pipe_id);
// Now, resume listening so we catch the next packets.
radio.startListening();
}
}
//
// Listen for serial input, which is how we set the address
//
if (Serial.available())
{
// If the character on serial input is in a valid range...
char c = Serial.read();
if ( c >= '1' && c <= '6' )
{
// It is our address
EEPROM.write(address_at_eeprom_location,c-'0');
// And we are done right now (no easy way to soft reset)
printf("\n\rManually reset address to: %c\n\rPress RESET to continue!",c);
while(1);
}
}
}
// vim:ai:ci sts=2 sw=2 ft=cpp
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment